* harden validator API against pre-finalized slot requests
* check `syncHorizon` when responding to validator api requests too far
from `head`
* limit state-id based requests to one epoch ahead of `head`
* put historic data bounds on block/attestation/etc validator production API, preventing them from being used with already-finalized slots
* add validator block smoke tests
* make rest test create a new genesis with the tests running roughly in
the first epoch to allow testing a few more boundary conditions
* era: load blocks and states
Era files contain finalized history and can be thought of as an
alternative source for block and state data that allows clients to avoid
syncing this information from the P2P network - the P2P network is then
used to "top up" the client with the most recent data. They can be
freely shared in the community via whatever means (http, torrent, etc)
and serve as a permanent cold store of consensus data (and, after the
merge, execution data) for history buffs and bean counters alike.
This PR gently introduces support for loading blocks and states in two
cases: block requests from rest/p2p and frontfilling when doing
checkpoint sync.
The era files are used as a secondary source if the information is not
found in the database - compared to the database, there are a few key
differences:
* the database stores the block indexed by block root while the era file
indexes by slot - the former is used only in rest, while the latter is
used both by p2p and rest.
* when loading blocks from era files, the root is no longer trivially
available - if it is needed, it must either be computed (slow) or cached
(messy) - the good news is that for p2p requests, it is not needed
* in era files, "framed" snappy encoding is used while in the database
we store unframed snappy - for p2p2 requests, the latter requires
recompression while the former could avoid it
* front-filling is the process of using era files to replace backfilling
- in theory this front-filling could happen from any block and
front-fills with gaps could also be entertained, but our backfilling
algorithm cannot take advantage of this because there's no (simple) way
to tell it to "skip" a range.
* front-filling, as implemented, is a bit slow (10s to load mainnet): we
load the full BeaconState for every era to grab the roots of the blocks
- it would be better to partially load the state - as such, it would
also be good to be able to partially decompress snappy blobs
* lookups from REST via root are served by first looking up a block
summary in the database, then using the slot to load the block data from
the era file - however, there needs to be an option to create the
summary table from era files to fully support historical queries
To test this, `ncli_db` has an era file exporter: the files it creates
should be placed in an `era` folder next to `db` in the data directory.
What's interesting in particular about this setup is that `db` remains
as the source of truth for security purposes - it stores the latest
synced head root which in turn determines where a node "starts" its
consensus participation - the era directory however can be freely shared
between nodes / people without any (significant) security implications,
assuming the era files are consistent / not broken.
There's lots of future improvements to be had:
* we can drop the in-memory `BlockRef` index almost entirely - at this
point, resident memory usage of Nimbus should drop to a cool 500-600 mb
* we could serve era files via REST trivially: this would drop backfill
times to whatever time it takes to download the files - unlike the
current implementation that downloads block by block, downloading an era
at a time almost entirely cuts out request overhead
* we can "reasonably" recreate detailed state history from almost any
point in time, turning an O(slot) process into O(1) effectively - we'll
still need caches and indices to do this with sufficient efficiency for
the rest api, but at least it cuts the whole process down to minutes
instead of hours, for arbitrary points in time
* CI: ignore failures with Nim-1.6 (temporary)
* test fixes
Co-authored-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
This extends the `--serve-light-client-data` launch option to serve
locally collected light client data via libp2p.
Backfill of historic best `LightClientUpdate` is not yet implemented.
See https://github.com/ethereum/consensus-specs/pull/2802
During operation as a light client, the chain DAG is not available.
As a preparation, the beacon node initialization logic is divided into
parts depending on the presence of the chain DAG, and parts that are
always available (including a future light client mode).
This is a pure code move without semantic changes.
Gracefully handles the new failure modes recently introduced to the DAG
as part of https://github.com/status-im/nimbus-eth2/pull/3513
Data that is deemed to exist but fails to load leads to an error log to
avoid suppressing logic errors accidentally. In `verifyFinalization`
mode, the assertions remain active.
When eliminating orphaned forks, light client data about blocks was also
deleted when the orphaned fork was referring to a state several slots
after the block. Linking light client data pruning with block deletion
instead of state deletion fixes this problem. Light client data always
refers to blocks and their immediate post-state.
When transitioning from light client to full node the chain DAG will be
loaded separately from the rest of the beacon node initialization.
Extracting chain DAG loading to a separate function will allow reusing
a lot of the existing code. This code move doesn't change semantics.
ref loop would stop one block early in this case - trying to load
everything in one loop ends up being pretty confusing..
* simplify finalizedBlocks topup by splitting it from the head loop /
query
When doing checkpoint sync, collecting light client data of known blocks
and states incorrectly assumes that `finalized_checkpoint` information
is also known. Hardens collection to only collect finalized checkpoint
data after `dag.computeEarliestLightClientSlot`.
This file is not actually used / useful - should metadata persistence
support be added in the future, it needs to be done with a new file such
that downgrades, that have the TODO logic unimplemented, don't break.
Witout this, we end up with a massive .wal file that needs to be
checkpointed on first startup (which takes a few minutes) - it's much
more efficient to do smaller checkpoints, it turns out.
Recently, block processing times have been going up as the network grows
making early attestation riskier. Since blocks are big and attestations
are small (though numerous and therefore bandwidth-intense), it seems
better to wait a little bit longer after receiving a block, before we
publish the attestation.
Adds `LightClientProcessor` as the pendant to `BlockProcessor` while
operating in light client mode. Note that a similar mechanism based on
async futures is used for interoperability with existing infrastructure,
despite light client object validation being done synchronously.
Up til now, the block dag has been using `BlockRef`, a structure adapted
for a full DAG, to represent all of chain history. This is a correct and
simple design, but does not exploit the linearity of the chain once
parts of it finalize.
By pruning the in-memory `BlockRef` structure at finalization, we save,
at the time of writing, a cool ~250mb (or 25%:ish) chunk of memory
landing us at a steady state of ~750mb normal memory usage for a
validating node.
Above all though, we prevent memory usage from growing proportionally
with the length of the chain, something that would not be sustainable
over time - instead, the steady state memory usage is roughly
determined by the validator set size which grows much more slowly. With
these changes, the core should remain sustainable memory-wise post-merge
all the way to withdrawals (when the validator set is expected to grow).
In-memory indices are still used for the "hot" unfinalized portion of
the chain - this ensure that consensus performance remains unchanged.
What changes is that for historical access, we use a db-based linear
slot index which is cache-and-disk-friendly, keeping the cost for
accessing historical data at a similar level as before, achieving the
savings at no percievable cost to functionality or performance.
A nice collateral benefit is the almost-instant startup since we no
longer load any large indicies at dag init.
The cost of this functionality instead can be found in the complexity of
having to deal with two ways of traversing the chain - by `BlockRef` and
by slot.
* use `BlockId` instead of `BlockRef` where finalized / historical data
may be required
* simplify clearance pre-advancement
* remove dag.finalizedBlocks (~50:ish mb)
* remove `getBlockAtSlot` - use `getBlockIdAtSlot` instead
* `parent` and `atSlot` for `BlockId` now require a `ChainDAGRef`
instance, unlike `BlockRef` traversal
* prune `BlockRef` parents on finality (~200:ish mb)
* speed up ChainDAG init by not loading finalized history index
* mess up light client server error handling - this need revisiting :)
The pre-release light client sync protocol defines additional Req/Resp
messages to be made available when `--serve-light-client-data` is set.
This patch extends the `{.libp2pProtocol.}` pragma with an optional
parameter to tag such light client sync protocol specific messages.
The corresponding protocols are only selectively registered with libp2p.
The spec implicitly talks about the slot of a block in several places,
and keeping it readily available is useful in a number of context -
might as well put this implicitly refereneced helper in the spec code
directly
One more step on the journey to reduce `BlockRef` usage across the
codebase - this one gets rid of `StateData` whose job was to keep track
of which block was last assigned to a state - these duties have now been
taken over by `latest_block_root`, a fairly recent addition that
computes this block root from state data (at a small cost that should be
insignificant)
99% mechanical change.
When a `beaconBlocksByRange` response advances the `safeSlot`, but later
has errors, the sync queue keeps repeating that same request until it is
fulfilled without errors. Data up through `safeSlot` is considered to be
immutable, i.e., finalized, so re-requesting that data is not useful.
By advancing the sync progress in that scenario, those redundant query
portions can be avoided. Note, the finalized block _itself_ is always
requested, even in the initial request. This behaviour is kept same.
* fewer deps on `BlockRef` traversal in anticipation of pruning
* allows identifying EpochRef:s by their shuffling as a first step of
* tighten error handling around missing blocks
using the zero hash for signalling "missing block" is fragile and easy
to miss - with checkpoint sync now, and pruning in the future, missing
blocks become "normal".
When syncing as a light client, different behaviour is needed to handle
the various ways how errors may occur. The existing logic for blocks can
also be applied to light client objects:
- `Invalid`: Malformed object that is clearly an error by its producer.
- `MissingParent`: More data is needed to decide applicability.
- `UnviableFork`: Object may be valid but will never apply on this fork.
- `Duplicate`: No errors were encountered but the object was not useful.
Light clients require full nodes to serve additional data so that they
can stay in sync with the network. This patch adds a new launch option
`--import-light-client-data` to configure what data to make available.
For now, data is only kept in memory; it is not persisted at this time.
Note that data is only locally collected, a separate patch is needed to
actually make it availble over the network. `--serve-light-client-data`
will be used for serving data, but is not functional yet outside tests.
When performing trusted node sync, historical access is limited to
states after the checkpoint.
Reindexing restores full historical access by replaying historical
blocks against the state and storing snapshots in the database.
The process can be initiated or resumed at any point in time.
The `p2p-interface.md` spec defines a `ResourceUnavailable` error to
return in situations where data that exists on the network is locally
unavailable, e.g., when a block within `MIN_EPOCHS_FOR_BLOCK_REQUESTS`
is requested by `BeaconBlocksByRange` but cannot be provided. This patch
adds support for that additional error code.
This adopts the spec sections of the pre-release proposal of the libp2p
based light client sync protocol, and also adds a test runner for the
new accompanying tests. While the release version of the light client
sync protocol contains conflicting definitions, it is currently unused,
and the code specific to the pre-release proposal is marked as such.
See https://github.com/ethereum/consensus-specs/pull/2802
`BlockId` is a type that bundles a block root with its slot number.
The type can be useful as key in tables that deal with non-finalized
blocks (not uniquely identified by slot) and also support pruning
(drop data about older blocks by slot). Instead of creating a custom
type for those use cases, this patch suggests implementing `hash` for
`BlockId` to re-use the existing type.
* --stop-at-synced-epoch
This allows benchmarking the initial sync (only forward sync, 1s error
margin). Might be useful in CI, with a timeout, as a sanity check.
The spec does not provide code for validating the `fork_version` field
of `LightClientUpdate`. However, we can use our own logic for additional
validation of that field. The spec's python test suite sets up states
that do not follow the fork schedule (e.g., that use Altair fork version
before Altair fork epoch), which complicates upstreaming this as code.
* Refactor and optimize logs.
* Introduce shortLog(SyncRequest).
* Address review comment.
* make sync queue logs more consistent
Adds a few minor logging improvements:
- Fixes a typo (`was happened` -> `has happened`)
- Avoids passing `reset_slot` argument to log statement multiple times
- Uses same `rewind_to_slot` label when logging in both sync directions
- Consistent rewind point logging
Co-authored-by: cheatfate <eugene.kabanov@status.im>
Uses consistent formatting in `light_client_sync.nim`, always refers to
fork-dependent light client objects in full qualified notation, moves
`get_safety_threshold` helper function to same location as in the spec.
Can't apply a phase0 block to a later phase state and vice versa.
Since instantiation has been a topic, pre/post c file size:
```
424K @mspec@sstate_transition.nim.c
892K @mspec@sstate_transition_block.nim.c
```
```
288K @mspec@sstate_transition.nim.c
880K @mspec@sstate_transition_block.nim.c
```
Updates the spec references for `GeneralizedIndex` constants used by the
light client sync protocol, and adds a short explanation how they are
derived and which SSZ fields they refer to.
This PR names and documents the concept of the archive: a range of slots
for which we have degraded functionality in terms of historical access -
in particular:
* we don't support rewinding to states in this range
* we don't keep an in-memory representation of the block dag
The archive de-facto exists in a trusted-node-synced node, but this PR
gives it a name and drops the in-memory digest index.
In order to satisfy `GetBlocksByRange` requests, we ensure that we have
blocks for the entire archive period via backfill. Future versions may
relax this further, adding a "pre-archive" period that is fully pruned.
During by-slot searches in the archive (both for libp2p and rest
requests), an extra database lookup is used to covert the given `slot`
to a `root` - future versions will avoid this using era files which
natively are indexed by `slot`. That said, the lookup is quite
fast compared to the actual block loading given how trivial the table
is - it's hard to measure, even.
A collateral benefit of this PR is that checkpoint-synced nodes will see
100-200MB memory usage savings, thanks to the dropped in-memory cache -
future pruning work will bring this benefit to full nodes as well.
* document chaindag storage architecture and assumptions
* look up parent using block id instead of full block in clearance
(future-proofing the code against a future in which blocks come from era
files)
* simplify finalized block init, always writing the backfill portion to
db at startup (to ensure lookups work as expected)
* preallocate some extra memory for finalized blocks, to avoid immediate
realloc
https://github.com/ethereum/consensus-specs/pull/2225 removed an ignore
rule that would filter out duplicate aggregates from gossip publishing -
however, this causes increased bandwidth and CPU usage as discussed in
https://github.com/ethereum/consensus-specs/issues/2183 - the intent is
to revert the removal and reinstate the rule.
This PR implements ignore filtering which cuts down on CPU usage (fewer
aggregates to validate) and bandwidth usage (less fanout of duplicates)
- as #2225 points out, this may lead to a small increase in IHAVE
messages.
* Support for Gnosis Chain
`make gnosis-chain-build` will build the Nimbus gnosis chain binary,
stored in `build/nimbus_beacon_node_for_gnosis_chain`.
`make gnosis-chain` will connect to the network.
Other changes:
* Restore compilation with -d:has_genesis_detection
* Removed Makefile target related to testnet0 and testnet1
* Added more debug logging for failed peer handshakes
* Report misconfigured builds which try to embed network metadata
that is incompatible with the currently selected const preset.
* Don't bundle network metadata in minimal builds, as they are not compatible
To calculate the deltas correctly, the `process_inactivity_updates` function
must be called before the rewards and penalties processing code in order to
update the `inactivity_scores` field in the state. This would have required
duplicating more logic from the spec in the ncli modules, so I've decided to
pay the price of introducing a run-time copy of the state at each epoch which
eliminates the need to duplicate logic (both for this fix and the previous one).
Other changes:
* Fixes for the read-only mode of the `BeaconChainDb`
* Fix an uint64 underflow in the debug output procedure for printing
balance deltas
* Allow Bellatrix states in the reward computation helpers
Streamline lookup with Forky and BeaconBlockFork (then we can do the
same for era)
We use type to avoid conditionals, as fork is often already known at a
"higher" level.
* load blockid before loading block by root - this is needed to map root
to slot and will eventually be done via block summary table for "old"
blocks
Co-authored-by: tersec <tersec@users.noreply.github.com>
Update several `ncli_db` commands to run in readOnly mode, allowing them
to be used with a running instance - in particular era export.
* export all eras by default
* skip already-exported eras
* clean up / document init
* drop `immutable_validators` data (pre-altair)
* document versions where data is first added
* avoid needlessly loading genesis block data on startup
* add a few more internal database consistency checks
* remove duplicate state root lookup on state load
* comment
When initializing backfill sync, the implementation intends to start at
the first unknown slot (`1` before tail). However, an incorrect variable
is passed, and backfill sync actually starts at the tail slot instead.
This patch corrects this by passing the intended variable. The problem
was introduced with the original backfill implementation at #3263.
The added options work in opt-in fashion. If they are not specified,
the server will respond to all requests as if the CORS specification
doesn't exist. This will result in errors in CORS-enabled clients.
Please note that future versions may support more than one allowed
origin. The option names will stay the same, but the user will be
able to repeat them on the command line (similar to other options
such as --web3-url).
To be documented in the guide in a separate PR.
The `SyncManager` has a leftover optional `sleepTime` parameter in
its constructor that used to configure the sync loop polling rate.
This parameter was replaced with a constant in #1602 and is no longer
functional. This patch removes the `sleepTime` leftovers.
#3304 introduced a regression to the sync status string displayed in the
status bar; during the main forward sync, the current slot is no longer
reported and always displays as `0`. This patch corrects the computation
to accurately report the current slot once more.
The `SyncManager` has a leftover optional `maxStatusAge` parameter in
its constructor that used to configure the libp2p `Status` polling rate.
This parameter was replaced with a constant in #1827 and is no longer
functional. This patch removes the `maxStatusAge` leftovers.
With these changes, we can backfill about 400-500 slots/sec, which means
a full backfill of mainnet takes about 2-3h.
However, the CPU is not saturated - neither in server nor in client
meaning that somewhere, there's an artificial inefficiency in the
communication - 16 parallel downloads *should* saturate the CPU.
One plasible cause would be "too many async event loop iterations" per
block request, which would introduce multiple "sleep-like" delays along
the way.
I can push the speed up to 800 slots/sec by increasing parallel
downloads even further, but going after the root cause of the slowness
would be better.
* avoid some unnecessary block copies
* double parallel requests
When node is restarted before backfill has started but after some blocks
have finalized with forward sync, we would not start the backfill.
* also clean up one last `SomeSome`
* Initial commit.
* Fix current test suite.
* Fix keymanager api test.
* Fix wss_sim.
* Add more keystore_management tests.
* Recover deleted isEmptyDir().
* Add `HttpHostUri` distinct type.
Move keymanager calls away from rest_beacon_calls to rest_keymanager_calls.
Add REST serialization of RemoteKeystore and Keystore object.
Add tests for Remote Keystore management API.
Add tests for Keystore management API (Add keystore).
Fix serialzation issues.
* Fix test to use HttpHostUri instead of Uri.
* Add links to specification in comments.
* Remove debugging echoes.
* harden and speed up block sync
The `GetBlockBy*` server implementation currently reads SSZ bytes from
database, deserializes them into a Nim object then serializes them right
back to SSZ - here, we eliminate the deser/ser steps and send the bytes
straight to the network. Unfortunately, the snappy recoding must still
be done because of differences in framing.
Also, the quota system makes one giant request for quota right before
sending all blocks - this means that a 1024 block request will be
"paused" for a long time, then all blocks will be sent at once causing a
spike in database reads which potentially will see the reading client
time out before any block is sent.
Finally, on the reading side we make several copies of blocks as they
travel through various queues - this was not noticeable before but
becomes a problem in two cases: bellatrix blocks are up to 10mb (instead
of .. 30-40kb) and when backfilling, we process a lot more of them a lot
faster.
* fix status comparisons for nodes syncing from genesis (#3327 was a bit
too hard)
* don't hit database at all for post-altair slots in GetBlock v1
requests
* deactivate Doppelganger Protection during genesis
* also don't actually flag supposed-doppelgangers (because they're before broadcastStartEpoch) on GENESIS_SLOT start
* update action tracker on dependent-root-changing reorg (instead of
epoch change)
* don't try to log duties while syncing - we're not tracking actions yet
* fix slot used for doppelganger loss detection
These use a separate flow, and were previously only registered from the
network
* don't log successes in totals mode (TMI)
* remove `attestation-sent` event which is unused
* Fix a resource leak introduced in https://github.com/status-im/nimbus-eth2/pull/3279
* Don't restart the Eth1 syncing proggress from scratch in case of
monitor failures during Eth2 syncing.
* Switch to the primary operator as soon as it is back online.
* Log the web3 credentials in fewer places
Other changes:
The 'web3 test' command has been enhanced to obtain and print more
data regarding the selected provider.
- Request metadata_v2 (altair) by default instead of the v1
- Change the metadata pinger to a 3 failure-then-kick, instead of being time based
- Update kicker scorer to take into account topics which we're not subscribed to, to be sure that we will be able to publish correctly
- Add some metrics to give "fanout" health (in the same spirit of mesh health)
Make `validator exit command` work both with `JSON-RPC` and `REST` APIs
Fix problem with specifying rest-url using `localhost`
Change back exit error messages in `state_transition_block`
The current counters set gauges etc to the value of the _last_ validator
to be processed - as the name of the feature implies, we should be using
sums instead.
* fix missing beacon state metrics on startup, pre-first-head-selection
* fix epoch metrics not being updated on cross-epoch reorg
* Store finalized block roots in database (3s startup)
When the chain has finalized a checkpoint, the history from that point
onwards becomes linear - this is exploited in `.era` files to allow
constant-time by-slot lookups.
In the database, we can do the same by storing finalized block roots in
a simple sparse table indexed by slot, bringing the two representations
closer to each other in terms of conceptual layout and performance.
Doing so has a number of interesting effects:
* mainnet startup time is improved 3-5x (3s on my laptop)
* the _first_ startup might take slightly longer as the new index is
being built - ~10s on the same laptop
* we no longer rely on the beacon block summaries to load the full dag -
this is a lot faster because we no longer have to look up each block by
parent root
* a collateral benefit is that we no longer need to load the full
summaries table into memory - we get the RSS benefits of #3164 without
the CPU hit.
Other random stuff:
* simplify forky block generics
* fix withManyWrites multiple evaluation
* fix validator key cache not being updated properly in chaindag
read-only mode
* drop pre-altair summaries from `kvstore`
* recreate missing summaries from altair+ blocks as well (in case
database has lost some to an involuntary restart)
* print database startup timings in chaindag load log
* avoid allocating superfluos state at startup
* use a recursive sql query to load the summaries of the unfinalized
blocks
Additional sanity checking of the status message exchanged during a
fresh connection:
* check that head and finalized make sense, slot-wise
* verify that finalized root lies on the canonical chain, when possible
* re-check these things for every status message during sync
* Harden handling of unviable forks
In our current handling of unviable forks, we allow peers to send us
blocks that come from a different fork - this is not necessarily an
error as it can happen naturally, but it does open up the client to a
case where the same unviable fork keeps getting requested - rather than
allowing this to happen, we'll now give these peers a small negative
score - if it keeps happening, we'll disconnect them.
* keep track of unviable forks in quarantine, to avoid filling it with
known junk
* collect peer scores in single module
* descore peers when they send unviable blocks during sync
* don't give score for duplicate blocks
* increase quarantine size to a level that allows finality to happen
under optimal conditions - this helps avoid downloading the same blocks
over and over in case of an unviable fork
* increase initial score for new peers to make room for one more failure
before disconnection
* log and score invalid/unviable blocks in requestmanager too
* avoid ChainDAG dependency in quarantine
* reject gossip blocks with unviable parent
* continue processing unviable sync blocks in order to build unviable
dag
* docs
* Update beacon_chain/consensus_object_pools/block_pools_types.nim
* add unviable queue test