- Implemented many of Alex's comments including reinsertion of the
withdrawal index in the BeaconState
- Implemented Sean's suggestion of separating the logic for block
production so that one matches the list in the payload with what
`get_expected_withdrawals` returns
- Changed `get_expected_wihdrawals` to match the current behavior and
moved it to `beacon-chain.md`
This commit changes the public API of the KZG library to the following high-level API:
```
- verify_kzg_proof()
- compute_aggregate_kzg_proof()
- verify_aggregate_kzg_proof()
- blob_to_kzg_commitment()
```
compared to the previous much more low-level API:
```
- compute_powers()
- matrix_lincomb()
- lincomb()
- bytes_to_bls_field()
- evaluate_polynomial_in_evaluation_form()
- verify_kzg_proof()
- compute_kzg_proof()
```
This means that all the cryptographic logic (including Fiat-Shamir) is now isolated and hidden in the KZG library and the `validator.md` file ends up being significantly simplified, only calling high-level KZG functions.
Some additional things that this commit does:
- Moves all EIP4844 cryptography into polynomial-commitments.md
- Improves the Fiat-Shamir stack by removing the need for SSZ and by introducing simple domain separators
Co-authored-by: Kevaundray Wedderburn <kevtheappdev@gmail.com>
Co-authored-by: Hsiao-Wei Wang <hsiaowei.eth@gmail.com>
Co-authored-by: Dankrad Feist <mail@dankradfeist.de>
Future light client protocol extensions may include data from the block
in addition to data from the state, e.g., `ExecutionPayloadHeader`.
To prepare for this, also pass the block to the corresponding functions.
In practice, blocks access is easier than historic state access, meaning
there are no practical limitations due to this change.
Add more detailed LC object documentation to explain that the various
merkle proofs are relative to the beacon block's state root.
Likewise, clarify that sync committees relate to the finalized header
(not to the optimistic header, which can be a period ahead).
For LC gossip, the documentation did not specify what slot number to use
for deriving the gossip objects. This missing documentation is now added
to document using `attested_header.slot`.
This PR, a continuation of
replaces `historical_roots` with
`historical_block_roots`.
By keeping an accumulator of historical block roots in the state, it
becomes possible to validate the entire block history that led up to
that particular state without executing the transitions, and without
checking them one by one in backwards order using a parent chain.
This is interesting for archival purposes as well as when implementing
sync protocols that can verify chunks of blocks quickly, meaning they
can be downloaded in any order.
It's also useful as it provides a canonical hash by which such chunks of
blocks can be named, with a direct reference in the state.
In this PR, `historical_roots` is frozen at its current value and
`historical_batches` are computed from the merge epoch onwards.
After this PR, `block_batch_root` in the state can be used to verify an
era of blocks against the state with a simple root check.
The `historical_roots` values on the other hand can be used to verify
that a constant distributed with clients is valid for a particular
state, and therefore extends the block validation all the way back to
genesis without backfilling `block_batch_root` and without introducing
any new security assumptions in the client.
As far as naming goes, it's convenient to talk about an "era" being 8192
slots ~= 1.14 days. The 8192 number comes from the
SLOTS_PER_HISTORICAL_ROOT constant.
With multiple easily verifable blocks in a file, it becomes trivial to
offload block history to out-of-protocol transfer methods (bittorrent /
ftp / whatever) - including execution payloads, paving the way for a
future in which clients purge block history in p2p.
This PR can be applied along with the merge which simplifies payload
distribution from the get-go. Both execution and consensus clients
benefit because from the merge onwards, they both need to be able to
supply ranges of blocks in the sync protocol from what effectively is
"cold storage".
Another possibility is to include it in a future cleanup PR - this
complicates the "cold storage" mode above by not covering exection
payloads from start.
* Remove the work-in-progress note in Bellatrix spec
Bellatrix is done and released.
* Remove work-in-progress notes in Bellatrix specs
* Remove work-in-progress notes in Bellatrix specs
* Remove work-in-progress notes in Bellatrix specs
Improves separation between BLS cryptography and Ethereum SSZ logic.
Now the BLS library just implements bytes_to_bls_field(). Then hash_to_bls_field() does the Ethereum SSZ magic and
calls bytes_to_bls_field().
While the current Altair specs define structures to aid light client
development, one missing key aspect is the network protocol definition.
Certain implementations have started defining their own REST based APIs,
e.g., Lodestar at https://github.com/ChainSafe/lodestar/blob/master/packages/api/src/routes/lightclient.ts
While such APIs are useful, REST does not seem to be the ideomatic
choice as the sole API available at such a low level for Ethereum.
This patch introduces a libp2p based protocol to allow light clients to
sync to the latest `BeaconBlockHeader` in a trustless and decentralized
manner, building on top of prior work from:
- @hwwhww at https://github.com/ethereum/consensus-specs/pull/2267
- @jinfwhuang at https://github.com/ethereum/consensus-specs/pull/2786
- Lodestar's REST API (also has an endpoint to fetch merkle proofs!)
Replaces `process_slot_for_light_client_store` which force updates the
`LightClientStore` automatically based on `finalized_header` age with
`try_light_client_store_force_update` which may be manually called based
on use case dependent heuristics if light client sync appears stuck.
Not all use cases share the same risk profile.
Introduces reduced `LightClientUpdate` structures to allow keeping track
of the latest `finalized_header` and `optimistic_header`. This may also
help in scheduling the next query for a full `LightClientUpdate` once
sync committee finality has been reached.
Adds `create_light_client_bootstrap` and `create_light_client_update`
functions as a reference implementation for serving light client data.
This also enables a new test harness to verify that light client data
gets applied to a `LightClientStore` as expected.
- Move more code into polynomial-commitments.md
- Implement aggregated sidecar verification logic from PR #2915
- Rename `kzgs` to `kzg_commitments`
Co-authored-by: Hsiao-Wei Wang <hsiaowei.eth@gmail.com>
Introduces a new `LightClientBootstrap` structure to allow setting up a
`LightClientStore` with the initial sync committee and block header from
a user-configured trusted block root.
This leads to new cases where the `LightClientStore` is only aware of
the current but not the next sync committee. As a side effect of these
new cases, the store's `finalized_header` may now advance into the next
sync committee period before a corresponding `LightClientUpdate` with
the new sync committee is obtained, improving responsiveness.
Note that so far, `LightClientUpdate.attested_header.slot` needed to be
newer than `LightClientStore.finalized_header.slot`. However, it is now
necessary to also consider certain older updates to try and backfill the
`next_sync_committee`. The `is_better_update` helper is also updated to
improve `best_valid_update` tracking.
`LightClientUpdate` structures currently use different merkle proof root
depending on the presence of `finalized_header`. By always rooting it in
the same state (the `attested_header.state_root`), logic gets simpler.
Caveats:
- In periods of extended non-finality, `update.finalized_header` may now
be outdated by several sync committee periods. The old implementation
rejected such updates as the `next_sync_committee` in them was stale,
but the new implementation can properly handle this case.
- The `next_sync_committee` can no longer be considered finalized based
on `is_finality_update`. Instead, waiting until `finalized_header` is
in the `attested_header`'s sync committee period is now necessary.
- Because `update.finalized_header > store.finalized_header` no longer
holds (for updates with finality), an `is_better_update` helper is
added to improve `best_valid_update` tracking (in the past, finalized
updates with supermajority participation would always directly apply)
This PR builds on prior work from:
- @hwwhww at https://github.com/ethereum/consensus-specs/pull/2829
The producer of `LightClientUpdate` structures usually does not know how
far the `LightClientStore` on the client side has advanced. Updates are
currently rejected when including a redundant `next_sync_committee` not
advancing the `LightClientStore`. Behaviour is changed to allow this.
- committee_index is used as an input to compute_subnet_for_attestation but it's not previously defined
- attestation.data.committee_index is incorrect, the field is "index"
When `state.finalized_checkpoint` references the genesis slot, it points
to an empty `root`, instead of the actual genesis block hash. This patch
updates the `LightClientUpdate` logic to allow including finality proofs
for genesis `finalized_checkpoint.root`, better supporting non-mainnet.
When including such a finality proof, the proof is for the empty `root`,
but `finalized_header` is kept zeroed out to signify this edge case.