Move EIP-4844 cryptography code to its own file

This commit is contained in:
George Kadianakis 2022-06-22 15:13:41 +03:00
parent 8a70295a84
commit 534a9d1d95
3 changed files with 155 additions and 101 deletions

View File

@ -12,18 +12,13 @@
- [Custom types](#custom-types)
- [Constants](#constants)
- [Domain types](#domain-types)
- [Preset](#preset)
- [Trusted setup](#trusted-setup)
- [Configuration](#configuration)
- [Containers](#containers)
- [Extended containers](#extended-containers)
- [`BeaconBlockBody`](#beaconblockbody)
- [Helper functions](#helper-functions)
- [KZG core](#kzg-core)
- [`lincomb`](#lincomb)
- [`blob_to_kzg`](#blob_to_kzg)
- [`kzg_to_versioned_hash`](#kzg_to_versioned_hash)
- [Misc](#misc)
- [`kzg_to_versioned_hash`](#kzg_to_versioned_hash)
- [`tx_peek_blob_versioned_hashes`](#tx_peek_blob_versioned_hashes)
- [`verify_kzgs_against_transactions`](#verify_kzgs_against_transactions)
- [Beacon chain state transition function](#beacon-chain-state-transition-function)
@ -42,11 +37,8 @@ This upgrade adds blobs to the beacon chain as part of EIP-4844.
| Name | SSZ equivalent | Description |
| - | - | - |
| `BLSFieldElement` | `uint256` | `x < BLS_MODULUS` |
| `Blob` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | |
| `VersionedHash` | `Bytes32` | |
| `KZGCommitment` | `Bytes48` | Same as BLS standard "is valid pubkey" check but also allows `0x00..00` for point-at-infinity |
| `KZGProof` | Bytes48 | Same as for `KZGCommitment` |
## Constants
@ -54,8 +46,6 @@ This upgrade adds blobs to the beacon chain as part of EIP-4844.
| - | - |
| `BLOB_TX_TYPE` | `uint8(0x05)` |
| `FIELD_ELEMENTS_PER_BLOB` | `4096` |
| `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` |
| `ROOTS_OF_UNITY` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` |
### Domain types
@ -63,18 +53,6 @@ This upgrade adds blobs to the beacon chain as part of EIP-4844.
| - | - |
| `DOMAIN_BLOBS_SIDECAR` | `DomainType('0x0a000000')` |
## Preset
### Trusted setup
The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used,
but reusing the `mainnet` settings in public networks is a critical security requirement.
| Name | Value |
| - | - |
| `KZG_SETUP_G2` | `Vector[G2Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
| `KZG_SETUP_LAGRANGE` | `Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
## Configuration
@ -105,29 +83,7 @@ class BeaconBlockBody(Container):
## Helper functions
### KZG core
KZG core functions. These are also defined in EIP-4844 execution specs.
#### `lincomb`
```python
def lincomb(points: List[KZGCommitment], scalars: List[BLSFieldElement]) -> KZGCommitment:
"""
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
"""
r = bls.Z1
for x, a in zip(points, scalars):
r = bls.add(r, bls.multiply(x, a))
return r
```
#### `blob_to_kzg`
```python
def blob_to_kzg(blob: Blob) -> KZGCommitment:
return lincomb(blob, KZG_SETUP_LAGRANGE)
```
### Misc
#### `kzg_to_versioned_hash`
@ -136,8 +92,6 @@ def kzg_to_versioned_hash(kzg: KZGCommitment) -> VersionedHash:
return BLOB_COMMITMENT_VERSION_KZG + hash(kzg)[1:]
```
### Misc
#### `tx_peek_blob_versioned_hashes`
This function retrieves the hashes from the `SignedBlobTransaction` as defined in EIP-4844, using SSZ offsets.

View File

@ -0,0 +1,153 @@
# EIP-4844 -- Polynomial Commitments
## Table of contents
<!-- TOC -->
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Introduction](#introduction)
- [Custom types](#custom-types)
- [Constants](#constants)
- [Preset](#preset)
- [Trusted setup](#trusted-setup)
- [Helper functions](#helper-functions)
- [BLS12-381 helpers](#bls12-381-helpers)
- [`bls_modular_inverse`](#bls_modular_inverse)
- [`div`](#div)
- [`lincomb`](#lincomb)
- [KZG](#kzg)
- [`blob_to_kzg`](#blob_to_kzg)
- [`verify_kzg_proof`](#verify_kzg_proof)
- [Polynomials](#polynomials)
- [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
<!-- /TOC -->
## Introduction
This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the EIP-4844 specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations.
## Custom types
| Name | SSZ equivalent | Description |
| - | - | - |
| `BLSFieldElement` | `uint256` | `x < BLS_MODULUS` |
| `KZGCommitment` | `Bytes48` | Same as BLS standard "is valid pubkey" check but also allows `0x00..00` for point-at-infinity |
| `KZGProof` | `Bytes48` | Same as for `KZGCommitment` |
## Constants
| Name | Value | Notes |
| - | - | - |
| `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` | Scalar field modulus of BLS12-381 |
| `ROOTS_OF_UNITY` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | Roots of unity of order FIELD_ELEMENTS_PER_BLOB over the BLS12-381 field |
## Preset
### Trusted setup
The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used,
but reusing the `mainnet` settings in public networks is a critical security requirement.
| Name | Value |
| - | - |
| `KZG_SETUP_G2` | `Vector[G2Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
| `KZG_SETUP_LAGRANGE` | `Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
## Helper functions
### BLS12-381 helpers
#### `bls_modular_inverse`
```python
def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
"""
Compute the modular inverse of x using the eGCD algorithm
i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0
"""
if x == 0:
return 0
lm, hm = 1, 0
low, high = x % BLS_MODULUS, BLS_MODULUS
while low > 1:
r = high // low
nm, new = hm - lm * r, high - low * r
lm, low, hm, high = nm, new, lm, low
return lm % BLS_MODULUS
```
#### `div`
```python
def div(x, y):
"""Divide two field elements: `x` by `y`"""
return x * inv(y) % BLS_MODULUS
```
#### `lincomb`
```python
def lincomb(points: List[KZGCommitment], scalars: List[BLSFieldElement]) -> KZGCommitment:
"""
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
"""
r = bls.Z1
for x, a in zip(points, scalars):
r = bls.add(r, bls.multiply(x, a))
return r
```
### KZG
KZG core functions. These are also defined in EIP-4844 execution specs.
#### `blob_to_kzg`
```python
def blob_to_kzg(blob: Blob) -> KZGCommitment:
return lincomb(KZG_SETUP_LAGRANGE, blob)
```
#### `verify_kzg_proof`
```python
def verify_kzg_proof(polynomial_kzg: KZGCommitment,
x: BLSFieldElement,
y: BLSFieldElement,
quotient_kzg: KZGProof) -> bool:
"""Verify KZG proof that `p(x) == y` where `p(x)` is the polynomial represented by `polynomial_kzg`"""
# Verify: P - y = Q * (X - x)
X_minus_x = bls.add(KZG_SETUP_G2[1], bls.multiply(bls.G2, BLS_MODULUS - x))
P_minus_y = bls.add(polynomial_kzg, bls.multiply(bls.G1, BLS_MODULUS - y))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2)],
[quotient_kzg, X_minus_x]
])
```
### Polynomials
#### `evaluate_polynomial_in_evaluation_form`
```python
def evaluate_polynomial_in_evaluation_form(poly: List[BLSFieldElement], x: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point `x`
Uses the barycentric formula:
f(x) = (1 - x**WIDTH) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (x - DOMAIN[i])
"""
width = len(poly)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = bls_modular_inverse(width)
for i in range(width):
r += div(poly[i] * ROOTS_OF_UNITY[i], (x - ROOTS_OF_UNITY[i]) )
r = r * (pow(x, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS
return r
```

View File

@ -82,59 +82,6 @@ def vector_lincomb(vectors: List[List[BLSFieldElement]], scalars: List[BLSFieldE
return [BLSFieldElement(x) for x in r]
def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
"""
Compute the modular inverse of x using the eGCD algorithm
i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0
"""
if x == 0:
return 0
lm, hm = 1, 0
low, high = x % BLS_MODULUS, BLS_MODULUS
while low > 1:
r = high // low
nm, new = hm - lm * r, high - low * r
lm, low, hm, high = nm, new, lm, low
return lm % BLS_MODULUS
def div(x, y):
"""Divide two field elements: `x` by `y`"""
return x * inv(y) % MODULUS
def verify_kzg_proof(polynomial_kzg: KZGCommitment,
x: BLSFieldElement,
y: BLSFieldElement,
quotient_kzg: KZGProof) -> bool:
"""Verify KZG proof that `p(x) == y` where `p(x)` is the polynomial represented by `polynomial_kzg`"""
# Verify: P - y = Q * (X - x)
X_minus_x = bls.add(KZG_SETUP_G2[1], bls.multiply(bls.G2, BLS_MODULUS - x))
P_minus_y = bls.add(polynomial_kzg, bls.multiply(bls.G1, BLS_MODULUS - y))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2)],
[quotient_kzg, X_minus_x]
])
def evaluate_polynomial_in_evaluation_form(poly: List[BLSFieldElement], x: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point `x`
Uses the barycentric formula:
f(x) = (1 - x**WIDTH) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (x - DOMAIN[i])
"""
width = len(poly)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = bls_modular_inverse(width)
for i in range(width):
r += div(poly[i] * ROOTS_OF_UNITY[i], (x - ROOTS_OF_UNITY[i]) )
r = r * (pow(x, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS
return r
def verify_blobs_sidecar(slot: Slot, beacon_block_root: Root,
expected_kzgs: Sequence[KZGCommitment], blobs_sidecar: BlobsSidecar):
assert slot == blobs_sidecar.beacon_block_slot