Merge pull request #2915 from asn-d6/consensus-4844-proofs-optimization

Optimizing EIP-4844 block validation (using KZG proofs)
This commit is contained in:
Hsiao-Wei Wang 2022-06-26 13:55:17 +02:00 committed by GitHub
commit d4a2bdcea0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 209 additions and 45 deletions

View File

@ -12,17 +12,13 @@
- [Custom types](#custom-types)
- [Constants](#constants)
- [Domain types](#domain-types)
- [Preset](#preset)
- [Trusted setup](#trusted-setup)
- [Configuration](#configuration)
- [Containers](#containers)
- [Extended containers](#extended-containers)
- [`BeaconBlockBody`](#beaconblockbody)
- [Helper functions](#helper-functions)
- [KZG core](#kzg-core)
- [`blob_to_kzg`](#blob_to_kzg)
- [`kzg_to_versioned_hash`](#kzg_to_versioned_hash)
- [Misc](#misc)
- [`kzg_to_versioned_hash`](#kzg_to_versioned_hash)
- [`tx_peek_blob_versioned_hashes`](#tx_peek_blob_versioned_hashes)
- [`verify_kzgs_against_transactions`](#verify_kzgs_against_transactions)
- [Beacon chain state transition function](#beacon-chain-state-transition-function)
@ -41,10 +37,8 @@ This upgrade adds blobs to the beacon chain as part of EIP-4844.
| Name | SSZ equivalent | Description |
| - | - | - |
| `BLSFieldElement` | `uint256` | `x < BLS_MODULUS` |
| `Blob` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | |
| `VersionedHash` | `Bytes32` | |
| `KZGCommitment` | `Bytes48` | Same as BLS standard "is valid pubkey" check but also allows `0x00..00` for point-at-infinity |
## Constants
@ -52,7 +46,6 @@ This upgrade adds blobs to the beacon chain as part of EIP-4844.
| - | - |
| `BLOB_TX_TYPE` | `uint8(0x05)` |
| `FIELD_ELEMENTS_PER_BLOB` | `4096` |
| `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` |
### Domain types
@ -60,18 +53,6 @@ This upgrade adds blobs to the beacon chain as part of EIP-4844.
| - | - |
| `DOMAIN_BLOBS_SIDECAR` | `DomainType('0x0a000000')` |
## Preset
### Trusted setup
The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used,
but reusing the `mainnet` settings in public networks is a critical security requirement.
| Name | Value |
| - | - |
| `KZG_SETUP_G2` | `Vector[G2Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
| `KZG_SETUP_LAGRANGE` | `Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
## Configuration
@ -102,23 +83,7 @@ class BeaconBlockBody(Container):
## Helper functions
### KZG core
KZG core functions. These are also defined in EIP-4844 execution specs.
#### `blob_to_kzg`
```python
def blob_to_kzg(blob: Blob) -> KZGCommitment:
computed_kzg = bls.Z1
for value, point_kzg in zip(blob, KZG_SETUP_LAGRANGE):
assert value < BLS_MODULUS
computed_kzg = bls.add(
computed_kzg,
bls.multiply(point_kzg, value)
)
return computed_kzg
```
### Misc
#### `kzg_to_versioned_hash`
@ -127,8 +92,6 @@ def kzg_to_versioned_hash(kzg: KZGCommitment) -> VersionedHash:
return BLOB_COMMITMENT_VERSION_KZG + hash(kzg)[1:]
```
### Misc
#### `tx_peek_blob_versioned_hashes`
This function retrieves the hashes from the `SignedBlobTransaction` as defined in EIP-4844, using SSZ offsets.

View File

@ -57,6 +57,7 @@ class BlobsSidecar(Container):
beacon_block_root: Root
beacon_block_slot: Slot
blobs: List[Blob, MAX_BLOBS_PER_BLOCK]
kzg_aggregated_proof: KZGProof
```
### `SignedBlobsSidecar`
@ -114,6 +115,7 @@ The following validations MUST pass before forwarding the `signed_blobs_sidecar`
Alias `sidecar = signed_blobs_sidecar.message`.
- _[IGNORE]_ the `sidecar.beacon_block_slot` is for the current slot (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) -- i.e. `blobs_sidecar.beacon_block_slot == current_slot`.
- _[REJECT]_ the `sidecar.blobs` are all well formatted, i.e. the `BLSFieldElement` in valid range (`x < BLS_MODULUS`).
- _[REJECT]_ The KZG proof is a correctly encoded compressed BLS G1 Point -- i.e. `bls.KeyValidate(blobs_sidecar.kzg_aggregated_proof)
- _[REJECT]_ the beacon proposer signature, `signed_blobs_sidecar.signature`, is valid -- i.e.
```python
domain = get_domain(state, DOMAIN_BLOBS_SIDECAR, blobs_sidecar.beacon_block_slot // SLOTS_PER_EPOCH)

View File

@ -0,0 +1,146 @@
# EIP-4844 -- Polynomial Commitments
## Table of contents
<!-- TOC -->
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Introduction](#introduction)
- [Custom types](#custom-types)
- [Constants](#constants)
- [Preset](#preset)
- [Trusted setup](#trusted-setup)
- [Helper functions](#helper-functions)
- [BLS12-381 helpers](#bls12-381-helpers)
- [`bls_modular_inverse`](#bls_modular_inverse)
- [`div`](#div)
- [`lincomb`](#lincomb)
- [KZG](#kzg)
- [`blob_to_kzg`](#blob_to_kzg)
- [`verify_kzg_proof`](#verify_kzg_proof)
- [Polynomials](#polynomials)
- [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
<!-- /TOC -->
## Introduction
This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the EIP-4844 specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations.
## Custom types
| Name | SSZ equivalent | Description |
| - | - | - |
| `BLSFieldElement` | `uint256` | `x < BLS_MODULUS` |
| `KZGCommitment` | `Bytes48` | Same as BLS standard "is valid pubkey" check but also allows `0x00..00` for point-at-infinity |
| `KZGProof` | `Bytes48` | Same as for `KZGCommitment` |
## Constants
| Name | Value | Notes |
| - | - | - |
| `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` | Scalar field modulus of BLS12-381 |
| `ROOTS_OF_UNITY` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | Roots of unity of order FIELD_ELEMENTS_PER_BLOB over the BLS12-381 field |
## Preset
### Trusted setup
The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used,
but reusing the `mainnet` settings in public networks is a critical security requirement.
| Name | Value |
| - | - |
| `KZG_SETUP_G2` | `Vector[G2Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
| `KZG_SETUP_LAGRANGE` | `Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
## Helper functions
### BLS12-381 helpers
#### `bls_modular_inverse`
```python
def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
"""
Compute the modular inverse of x
i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0
"""
return pow(x, -1, BLS_MODULUS) if x != 0 else 0
```
#### `div`
```python
def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement:
"""Divide two field elements: `x` by `y`"""
return x * bls_modular_inverse(y) % BLS_MODULUS
```
#### `lincomb`
```python
def lincomb(points: List[KZGCommitment], scalars: List[BLSFieldElement]) -> KZGCommitment:
"""
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
"""
r = bls.Z1
for x, a in zip(points, scalars):
r = bls.add(r, bls.multiply(x, a))
return r
```
### KZG
KZG core functions. These are also defined in EIP-4844 execution specs.
#### `blob_to_kzg`
```python
def blob_to_kzg(blob: Blob) -> KZGCommitment:
return lincomb(KZG_SETUP_LAGRANGE, blob)
```
#### `verify_kzg_proof`
```python
def verify_kzg_proof(polynomial_kzg: KZGCommitment,
x: BLSFieldElement,
y: BLSFieldElement,
quotient_kzg: KZGProof) -> bool:
"""
Verify KZG proof that ``p(x) == y`` where ``p(x)`` is the polynomial represented by ``polynomial_kzg``.
"""
# Verify: P - y = Q * (X - x)
X_minus_x = bls.add(KZG_SETUP_G2[1], bls.multiply(bls.G2, BLS_MODULUS - x))
P_minus_y = bls.add(polynomial_kzg, bls.multiply(bls.G1, BLS_MODULUS - y))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2)],
[quotient_kzg, X_minus_x]
])
```
### Polynomials
#### `evaluate_polynomial_in_evaluation_form`
```python
def evaluate_polynomial_in_evaluation_form(poly: List[BLSFieldElement], x: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point `x`
Uses the barycentric formula:
f(x) = (1 - x**WIDTH) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (x - DOMAIN[i])
"""
width = len(poly)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = bls_modular_inverse(width)
for i in range(width):
r += div(poly[i] * ROOTS_OF_UNITY[i], (x - ROOTS_OF_UNITY[i]))
r = r * (pow(x, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS
return r
```

View File

@ -12,6 +12,9 @@
- [Prerequisites](#prerequisites)
- [Helpers](#helpers)
- [`is_data_available`](#is_data_available)
- [`hash_to_bls_field`](#hash_to_bls_field)
- [`compute_powers`](#compute_powers)
- [`vector_lincomb`](#vector_lincomb)
- [`verify_blobs_sidecar`](#verify_blobs_sidecar)
- [Beacon chain responsibilities](#beacon-chain-responsibilities)
- [Block proposal](#block-proposal)
@ -40,7 +43,7 @@ Please see related Beacon Chain doc before continuing and use them as a referenc
The implementation of `is_data_available` is meant to change with later sharding upgrades.
Initially, it requires every verifying actor to retrieve the matching `BlobsSidecar`,
and verify the sidecar with `verify_blobs`.
and verify the sidecar with `verify_blobs_sidecar`.
Without the sidecar the block may be processed further optimistically,
but MUST NOT be considered valid until a valid `BlobsSidecar` has been downloaded.
@ -51,19 +54,70 @@ def is_data_available(slot: Slot, beacon_block_root: Root, kzgs: Sequence[KZGCom
verify_blobs_sidecar(slot, beacon_block_root, kzgs, sidecar)
```
### `hash_to_bls_field`
```python
def hash_to_bls_field(x: Container) -> BLSFieldElement:
"""
This function is used to generate Fiat-Shamir challenges. The output is not uniform over the BLS field.
"""
return int.from_bytes(hash_tree_root(x), "little") % BLS_MODULUS
```
### `compute_powers`
```python
def compute_powers(x: BLSFieldElement, n: uint64) -> List[BLSFieldElement]:
current_power = 1
powers = []
for _ in range(n):
powers.append(BLSFieldElement(current_power))
current_power = current_power * int(x) % BLS_MODULUS
return powers
```
### `vector_lincomb`
```python
def vector_lincomb(vectors: List[List[BLSFieldElement]], scalars: List[BLSFieldElement]) -> List[BLSFieldElement]:
"""
Given a list of vectors, compute the linear combination of each column with `scalars`, and return the resulting
vector.
"""
r = [0]*len(vectors[0])
for v, a in zip(vectors, scalars):
for i, x in enumerate(v):
r[i] = (r[i] + a * x) % BLS_MODULUS
return [BLSFieldElement(x) for x in r]
```
### `verify_blobs_sidecar`
```python
def verify_blobs_sidecar(slot: Slot, beacon_block_root: Root,
expected_kzgs: Sequence[KZGCommitment], blobs_sidecar: BlobsSidecar):
expected_kzgs: Sequence[KZGCommitment], blobs_sidecar: BlobsSidecar) -> None:
assert slot == blobs_sidecar.beacon_block_slot
assert beacon_block_root == blobs_sidecar.beacon_block_root
blobs = blobs_sidecar.blobs
kzg_aggregated_proof = blobs_sidecar.kzg_aggregated_proof
assert len(expected_kzgs) == len(blobs)
for kzg, blob in zip(expected_kzgs, blobs):
assert blob_to_kzg(blob) == kzg
```
# Generate random linear combination challenges
r = hash_to_bls_field([blobs, expected_kzgs])
r_powers = compute_powers(r, len(expected_kzgs))
# Compute commitment to aggregated polynomial
aggregated_poly_commitment = lincomb(expected_kzgs, r_powers)
# Create aggregated polynomial in evaluation form
aggregated_poly = vector_lincomb(blobs, r_powers)
# Generate challenge `x` and evaluate the aggregated polynomial at `x`
x = hash_to_bls_field([aggregated_poly, aggregated_poly_commitment])
y = evaluate_polynomial_in_evaluation_form(aggregated_poly, x)
# Verify aggregated proof
assert verify_kzg_proof(aggregated_poly_commitment, x, y, kzg_aggregated_proof)
```
## Beacon chain responsibilities
@ -130,4 +184,3 @@ The validator MUST hold on to blobs for `MIN_EPOCHS_FOR_BLOBS_SIDECARS_REQUESTS`
to ensure the data-availability of these blobs throughout the network.
After `MIN_EPOCHS_FOR_BLOBS_SIDECARS_REQUESTS` nodes MAY prune the blobs and/or stop serving them.