plonky2/evm/src/cpu/cpu_stark.rs

444 lines
18 KiB
Rust
Raw Normal View History

use std::borrow::Borrow;
use std::iter::repeat;
2022-05-18 09:22:58 +02:00
use std::marker::PhantomData;
2022-06-23 14:36:14 -07:00
use itertools::Itertools;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
2022-05-18 09:22:58 +02:00
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
2022-05-18 09:22:58 +02:00
use super::columns::CpuColumnsView;
use super::halt;
use super::membus::NUM_GP_CHANNELS;
use crate::all_stark::Table;
2022-05-18 09:22:58 +02:00
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cpu::columns::{COL_MAP, NUM_CPU_COLUMNS};
use crate::cpu::{
byte_unpacking, clock, contextops, control_flow, decode, dup_swap, gas, jumps, membus, memio,
modfp254, pc, push0, shift, simple_logic, stack, syscalls_exceptions,
};
use crate::cross_table_lookup::{Column, Filter, TableWithColumns};
use crate::evaluation_frame::{StarkEvaluationFrame, StarkFrame};
use crate::memory::segments::{Segment, SEGMENT_SCALING_FACTOR};
use crate::memory::{NUM_CHANNELS, VALUE_LIMBS};
2022-05-18 09:22:58 +02:00
use crate::stark::Stark;
/// Creates the vector of `Columns` corresponding to the General Purpose channels when calling the Keccak sponge:
/// the CPU reads the output of the sponge directly from the `KeccakSpongeStark` table.
pub(crate) fn ctl_data_keccak_sponge<F: Field>() -> Vec<Column<F>> {
// When executing KECCAK_GENERAL, the GP memory channels are used as follows:
// GP channel 0: stack[-1] = addr (context, segment, virt)
// GP channel 1: stack[-2] = len
// Next GP channel 0: pushed = outputs
let (context, segment, virt) = get_addr(&COL_MAP, 0);
let context = Column::single(context);
let segment = Column::single(segment);
let virt = Column::single(virt);
let len = Column::single(COL_MAP.mem_channels[1].value[0]);
2022-08-14 16:36:07 -07:00
let num_channels = F::from_canonical_usize(NUM_CHANNELS);
let timestamp = Column::linear_combination([(COL_MAP.clock, num_channels)]);
2022-08-14 16:36:07 -07:00
let mut cols = vec![context, segment, virt, len, timestamp];
cols.extend(Column::singles_next_row(COL_MAP.mem_channels[0].value));
cols
}
/// CTL filter for a call to the Keccak sponge.
// KECCAK_GENERAL is differentiated from JUMPDEST by its second bit set to 0.
pub(crate) fn ctl_filter_keccak_sponge<F: Field>() -> Filter<F> {
Filter::new(
vec![(
Column::single(COL_MAP.op.jumpdest_keccak_general),
Column::linear_combination_with_constant([(COL_MAP.opcode_bits[1], -F::ONE)], F::ONE),
)],
vec![],
)
2022-08-14 16:36:07 -07:00
}
/// Creates the vector of `Columns` corresponding to the two inputs and
/// one output of a binary operation.
fn ctl_data_binops<F: Field>() -> Vec<Column<F>> {
let mut res = Column::singles(COL_MAP.mem_channels[0].value).collect_vec();
res.extend(Column::singles(COL_MAP.mem_channels[1].value));
res.extend(Column::singles_next_row(COL_MAP.mem_channels[0].value));
res
}
/// Creates the vector of `Columns` corresponding to the three inputs and
/// one output of a ternary operation. By default, ternary operations use
/// the first three memory channels, and the next top of the stack for the
/// result (binary operations do not use the third inputs).
fn ctl_data_ternops<F: Field>() -> Vec<Column<F>> {
let mut res = Column::singles(COL_MAP.mem_channels[0].value).collect_vec();
res.extend(Column::singles(COL_MAP.mem_channels[1].value));
res.extend(Column::singles(COL_MAP.mem_channels[2].value));
res.extend(Column::singles_next_row(COL_MAP.mem_channels[0].value));
res
}
/// Creates the vector of columns corresponding to the opcode, the two inputs and the output of the logic operation.
pub(crate) fn ctl_data_logic<F: Field>() -> Vec<Column<F>> {
2023-08-11 10:21:11 -04:00
// Instead of taking single columns, we reconstruct the entire opcode value directly.
2023-08-11 09:23:58 -04:00
let mut res = vec![Column::le_bits(COL_MAP.opcode_bits)];
res.extend(ctl_data_binops());
2023-08-11 09:23:58 -04:00
res
}
/// CTL filter for logic operations.
pub(crate) fn ctl_filter_logic<F: Field>() -> Filter<F> {
Filter::new_simple(Column::single(COL_MAP.op.logic_op))
}
/// Returns the `TableWithColumns` for the CPU rows calling arithmetic operations.
pub(crate) fn ctl_arithmetic_base_rows<F: Field>() -> TableWithColumns<F> {
// Instead of taking single columns, we reconstruct the entire opcode value directly.
let mut columns = vec![Column::le_bits(COL_MAP.opcode_bits)];
columns.extend(ctl_data_ternops());
// Create the CPU Table whose columns are those with the three
// inputs and one output of the ternary operations listed in `ops`
// (also `ops` is used as the operation filter). The list of
// operations includes binary operations which will simply ignore
// the third input.
let col_bit = Column::linear_combination_with_constant(
vec![(COL_MAP.opcode_bits[5], F::NEG_ONE)],
F::ONE,
);
TableWithColumns::new(
Table::Cpu,
columns,
Some(Filter::new(
vec![(Column::single(COL_MAP.op.push_prover_input), col_bit)],
vec![Column::sum([
COL_MAP.op.binary_op,
COL_MAP.op.fp254_op,
COL_MAP.op.ternary_op,
COL_MAP.op.shift,
COL_MAP.op.syscall,
COL_MAP.op.exception,
])],
)),
)
}
/// Creates the vector of `Columns` corresponding to the contents of General Purpose channels when calling byte packing.
/// We use `ctl_data_keccak_sponge` because the `Columns` are the same as the ones computed for `KeccakSpongeStark`.
pub(crate) fn ctl_data_byte_packing<F: Field>() -> Vec<Column<F>> {
let mut res = vec![Column::constant(F::ONE)]; // is_read
res.extend(ctl_data_keccak_sponge());
res
}
/// CTL filter for the `MLOAD_32BYTES` operation.
/// MLOAD_32 BYTES is differentiated from MSTORE_32BYTES by its fifth bit set to 1.
pub(crate) fn ctl_filter_byte_packing<F: Field>() -> Filter<F> {
Filter::new(
vec![(
Column::single(COL_MAP.op.m_op_32bytes),
Column::single(COL_MAP.opcode_bits[5]),
)],
vec![],
)
}
/// Creates the vector of `Columns` corresponding to the contents of General Purpose channels when calling byte unpacking.
pub(crate) fn ctl_data_byte_unpacking<F: Field>() -> Vec<Column<F>> {
let is_read = Column::constant(F::ZERO);
// When executing MSTORE_32BYTES, the GP memory channels are used as follows:
// GP channel 0: stack[-1] = addr (context, segment, virt)
// GP channel 1: stack[-2] = val
// Next GP channel 0: pushed = new_offset (virt + len)
let (context, segment, virt) = get_addr(&COL_MAP, 0);
let mut res = vec![
is_read,
Column::single(context),
Column::single(segment),
Column::single(virt),
];
// len can be reconstructed as new_offset - virt.
let len = Column::linear_combination_and_next_row_with_constant(
[(COL_MAP.mem_channels[0].value[0], -F::ONE)],
[(COL_MAP.mem_channels[0].value[0], F::ONE)],
F::ZERO,
);
res.push(len);
let num_channels = F::from_canonical_usize(NUM_CHANNELS);
let timestamp = Column::linear_combination([(COL_MAP.clock, num_channels)]);
res.push(timestamp);
let val = Column::singles(COL_MAP.mem_channels[1].value);
res.extend(val);
res
}
/// CTL filter for the `MSTORE_32BYTES` operation.
/// MSTORE_32BYTES is differentiated from MLOAD_32BYTES by its fifth bit set to 0.
pub(crate) fn ctl_filter_byte_unpacking<F: Field>() -> Filter<F> {
Filter::new(
vec![(
Column::single(COL_MAP.op.m_op_32bytes),
Column::linear_combination_with_constant([(COL_MAP.opcode_bits[5], -F::ONE)], F::ONE),
)],
vec![],
)
}
/// Creates the vector of `Columns` corresponding to the contents of the CPU registers when performing a `PUSH`.
/// `PUSH` internal reads are done by calling `BytePackingStark`.
pub(crate) fn ctl_data_byte_packing_push<F: Field>() -> Vec<Column<F>> {
let is_read = Column::constant(F::ONE);
let context = Column::single(COL_MAP.code_context);
let segment = Column::constant(F::from_canonical_usize(Segment::Code as usize));
// The initial offset if `pc + 1`.
let virt =
Column::linear_combination_with_constant([(COL_MAP.program_counter, F::ONE)], F::ONE);
let val = Column::singles_next_row(COL_MAP.mem_channels[0].value);
// We fetch the length from the `PUSH` opcode lower bits, that indicate `len - 1`.
let len = Column::le_bits_with_constant(&COL_MAP.opcode_bits[0..5], F::ONE);
let num_channels = F::from_canonical_usize(NUM_CHANNELS);
let timestamp = Column::linear_combination([(COL_MAP.clock, num_channels)]);
let mut res = vec![is_read, context, segment, virt, len, timestamp];
res.extend(val);
res
}
/// CTL filter for the `PUSH` operation.
pub(crate) fn ctl_filter_byte_packing_push<F: Field>() -> Filter<F> {
let bit_col = Column::single(COL_MAP.opcode_bits[5]);
Filter::new(
vec![(Column::single(COL_MAP.op.push_prover_input), bit_col)],
vec![],
)
}
/// Index of the memory channel storing code.
2023-11-17 15:45:38 -05:00
pub(crate) const MEM_CODE_CHANNEL_IDX: usize = 0;
/// Index of the first general purpose memory channel.
2023-11-17 15:45:38 -05:00
pub(crate) const MEM_GP_CHANNELS_IDX_START: usize = MEM_CODE_CHANNEL_IDX + 1;
/// Recover the three components of an address, given a CPU row and
/// a provided memory channel index.
/// The components are recovered as follows:
///
/// - `context`, shifted by 2^64 (i.e. at index 2)
/// - `segment`, shifted by 2^32 (i.e. at index 1)
/// - `virtual`, not shifted (i.e. at index 0)
pub(crate) const fn get_addr<T: Copy>(lv: &CpuColumnsView<T>, mem_channel: usize) -> (T, T, T) {
let addr_context = lv.mem_channels[mem_channel].value[2];
let addr_segment = lv.mem_channels[mem_channel].value[1];
let addr_virtual = lv.mem_channels[mem_channel].value[0];
(addr_context, addr_segment, addr_virtual)
}
/// Make the time/channel column for memory lookups.
fn mem_time_and_channel<F: Field>(channel: usize) -> Column<F> {
let scalar = F::from_canonical_usize(NUM_CHANNELS);
let addend = F::from_canonical_usize(channel);
Column::linear_combination_with_constant([(COL_MAP.clock, scalar)], addend)
}
/// Creates the vector of `Columns` corresponding to the contents of the code channel when reading code values.
pub(crate) fn ctl_data_code_memory<F: Field>() -> Vec<Column<F>> {
let mut cols = vec![
Column::constant(F::ONE), // is_read
Column::single(COL_MAP.code_context), // addr_context
Column::constant(F::from_canonical_usize(Segment::Code.unscale())), // addr_segment
Column::single(COL_MAP.program_counter), // addr_virtual
];
// Low limb of the value matches the opcode bits
cols.push(Column::le_bits(COL_MAP.opcode_bits));
// High limbs of the value are all zero.
cols.extend(repeat(Column::constant(F::ZERO)).take(VALUE_LIMBS - 1));
cols.push(mem_time_and_channel(MEM_CODE_CHANNEL_IDX));
cols
}
/// Creates the vector of `Columns` corresponding to the contents of General Purpose channels.
pub(crate) fn ctl_data_gp_memory<F: Field>(channel: usize) -> Vec<Column<F>> {
let channel_map = COL_MAP.mem_channels[channel];
let mut cols: Vec<_> = Column::singles([
channel_map.is_read,
channel_map.addr_context,
channel_map.addr_segment,
channel_map.addr_virtual,
2022-06-23 14:36:14 -07:00
])
.collect();
cols.extend(Column::singles(channel_map.value));
2022-07-07 09:27:50 -07:00
cols.push(mem_time_and_channel(MEM_GP_CHANNELS_IDX_START + channel));
2022-07-07 09:52:38 -07:00
2022-06-23 14:36:14 -07:00
cols
}
pub(crate) fn ctl_data_partial_memory<F: Field>() -> Vec<Column<F>> {
let channel_map = COL_MAP.partial_channel;
let values = COL_MAP.mem_channels[0].value;
let mut cols: Vec<_> = Column::singles([
channel_map.is_read,
channel_map.addr_context,
channel_map.addr_segment,
channel_map.addr_virtual,
])
.collect();
cols.extend(Column::singles(values));
cols.push(mem_time_and_channel(
MEM_GP_CHANNELS_IDX_START + NUM_GP_CHANNELS,
));
cols
}
/// CTL filter for code read and write operations.
pub(crate) fn ctl_filter_code_memory<F: Field>() -> Filter<F> {
Filter::new_simple(Column::sum(COL_MAP.op.iter()))
}
/// CTL filter for General Purpose memory read and write operations.
pub(crate) fn ctl_filter_gp_memory<F: Field>(channel: usize) -> Filter<F> {
Filter::new_simple(Column::single(COL_MAP.mem_channels[channel].used))
2022-06-23 14:36:14 -07:00
}
pub(crate) fn ctl_filter_partial_memory<F: Field>() -> Filter<F> {
Filter::new_simple(Column::single(COL_MAP.partial_channel.used))
}
/// Structure representing the CPU Stark.
#[derive(Copy, Clone, Default)]
pub(crate) struct CpuStark<F, const D: usize> {
2022-05-18 09:22:58 +02:00
pub f: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for CpuStark<F, D> {
type EvaluationFrame<FE, P, const D2: usize> = StarkFrame<P, NUM_CPU_COLUMNS>
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
type EvaluationFrameTarget = StarkFrame<ExtensionTarget<D>, NUM_CPU_COLUMNS>;
2022-05-18 09:22:58 +02:00
/// Evaluates all CPU constraints.
2022-05-18 09:22:58 +02:00
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: &Self::EvaluationFrame<FE, P, D2>,
2022-12-02 22:47:07 -08:00
yield_constr: &mut ConstraintConsumer<P>,
2022-05-18 09:22:58 +02:00
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
2023-09-22 10:14:47 -04:00
let local_values: &[P; NUM_CPU_COLUMNS] = vars.get_local_values().try_into().unwrap();
let local_values: &CpuColumnsView<P> = local_values.borrow();
2023-09-22 10:14:47 -04:00
let next_values: &[P; NUM_CPU_COLUMNS] = vars.get_next_values().try_into().unwrap();
let next_values: &CpuColumnsView<P> = next_values.borrow();
byte_unpacking::eval_packed(local_values, next_values, yield_constr);
2023-11-09 16:42:18 -05:00
clock::eval_packed(local_values, next_values, yield_constr);
2022-12-11 10:59:14 -08:00
contextops::eval_packed(local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
control_flow::eval_packed_generic(local_values, next_values, yield_constr);
2023-04-07 17:06:57 -04:00
decode::eval_packed_generic(local_values, yield_constr);
dup_swap::eval_packed(local_values, next_values, yield_constr);
gas::eval_packed(local_values, next_values, yield_constr);
halt::eval_packed(local_values, next_values, yield_constr);
jumps::eval_packed(local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
membus::eval_packed(local_values, yield_constr);
memio::eval_packed(local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
modfp254::eval_packed(local_values, yield_constr);
pc::eval_packed(local_values, next_values, yield_constr);
push0::eval_packed(local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
shift::eval_packed(local_values, yield_constr);
2023-08-28 16:32:04 -04:00
simple_logic::eval_packed(local_values, next_values, yield_constr);
stack::eval_packed(local_values, next_values, yield_constr);
syscalls_exceptions::eval_packed(local_values, next_values, yield_constr);
2022-05-18 09:22:58 +02:00
}
/// Circuit version of `eval_packed_generic`.
/// Evaluates all CPU constraints.
2022-05-18 09:22:58 +02:00
fn eval_ext_circuit(
&self,
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
vars: &Self::EvaluationFrameTarget,
2022-12-02 22:47:07 -08:00
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
2022-05-18 09:22:58 +02:00
) {
2023-09-22 10:14:47 -04:00
let local_values: &[ExtensionTarget<D>; NUM_CPU_COLUMNS] =
vars.get_local_values().try_into().unwrap();
let local_values: &CpuColumnsView<ExtensionTarget<D>> = local_values.borrow();
2023-09-22 10:14:47 -04:00
let next_values: &[ExtensionTarget<D>; NUM_CPU_COLUMNS] =
vars.get_next_values().try_into().unwrap();
let next_values: &CpuColumnsView<ExtensionTarget<D>> = next_values.borrow();
byte_unpacking::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2023-11-09 16:42:18 -05:00
clock::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2022-12-11 10:59:14 -08:00
contextops::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
control_flow::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2023-04-07 17:06:57 -04:00
decode::eval_ext_circuit(builder, local_values, yield_constr);
dup_swap::eval_ext_circuit(builder, local_values, next_values, yield_constr);
gas::eval_ext_circuit(builder, local_values, next_values, yield_constr);
halt::eval_ext_circuit(builder, local_values, next_values, yield_constr);
jumps::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
membus::eval_ext_circuit(builder, local_values, yield_constr);
memio::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
modfp254::eval_ext_circuit(builder, local_values, yield_constr);
pc::eval_ext_circuit(builder, local_values, next_values, yield_constr);
push0::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2022-12-02 22:47:07 -08:00
shift::eval_ext_circuit(builder, local_values, yield_constr);
2023-08-28 16:32:04 -04:00
simple_logic::eval_ext_circuit(builder, local_values, next_values, yield_constr);
stack::eval_ext_circuit(builder, local_values, next_values, yield_constr);
syscalls_exceptions::eval_ext_circuit(builder, local_values, next_values, yield_constr);
2022-05-18 09:22:58 +02:00
}
fn constraint_degree(&self) -> usize {
3
}
}
2022-05-19 11:10:10 +02:00
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::cpu::cpu_stark::CpuStark;
use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree};
#[test]
2022-05-20 08:34:25 +02:00
fn test_stark_degree() -> Result<()> {
2022-05-19 11:10:10 +02:00
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = CpuStark<F, D>;
let stark = S {
f: Default::default(),
};
2022-05-20 08:34:25 +02:00
test_stark_low_degree(stark)
2022-05-19 11:10:10 +02:00
}
#[test]
fn test_stark_circuit() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = CpuStark<F, D>;
let stark = S {
f: Default::default(),
};
test_stark_circuit_constraints::<F, C, S, D>(stark)
}
}