Merge #831: Safegcd inverses, drop Jacobi symbols, remove libgmp
24ad04fc06
Make scalar_inverse{,_var} benchmark scale with SECP256K1_BENCH_ITERS (Pieter Wuille)ebc1af700f
Optimization: track f,g limb count and pass to new variable-time update_fg_var (Peter Dettman)b306935ac1
Optimization: use formulas instead of lookup tables for cancelling g bits (Peter Dettman)9164a1b658
Optimization: special-case zero modulus limbs in modinv64 (Pieter Wuille)1f233b3fa0
Remove num/gmp support (Pieter Wuille)20448b8d09
Remove unused Jacobi symbol support (Pieter Wuille)5437e7bdfb
Remove unused scalar_sqr (Pieter Wuille)aa9cc52180
Improve field/scalar inverse tests (Pieter Wuille)1e0e885c8a
Make field/scalar code use the new modinv modules for inverses (Pieter Wuille)436281afdc
Move secp256k1_fe_inverse{_var} to per-impl files (Pieter Wuille)aa404d53be
Move secp256k1_scalar_{inverse{_var},is_even} to per-impl files (Pieter Wuille)08d54964e5
Improve bounds checks in modinv modules (Pieter Wuille)151aac00d3
Add tests for modinv modules (Pieter Wuille)d8a92fcc4c
Add extensive comments on the safegcd algorithm and implementation (Pieter Wuille)8e415acba2
Add safegcd based modular inverse modules (Peter Dettman)de0a643c3d
Add secp256k1_ctz{32,64}_var functions (Pieter Wuille) Pull request description: This is a rebased and squashed version of #767, adding safegcd-based implementations of constant-time and variable-time modular inverses for scalars and field elements, by Peter Dettman. The PR is organized as follows: * **Add secp256k1_ctz{32,64}_var functions** Introduction of ctz functions to util.h (which use `__builtin_ctz` on recent GCC and Clang, but fall back to using a software emulation using de Bruijn on other platforms). This isn't used anywhere in this commit, but does include tests. * **Add safegcd based modular inverse modules** Add Peter Dettman's safegcd code from #767 (without some of his optimizations, which are moved to later commits), turned into separate modules by me. * **Add extensive comments on the safegcd algorithm and implementation** Add a long description of the algorithm and optimizations to `doc/safegcd_implementation.md`, as well as additional comments to the code itself. It is probably best to review this together with the previous commit (they're separated to keep authorship). * **Add tests for modinv modules** Adds tests on the modinv interface directly, for arbitrary moduli. * **Improve bounds checks in modinv modules** Adds a lot of sanity checking to the modinv modules. * **Move secp256k1_scalar_{inverse{_var},is_even} to per-impl files** A pure refactor to prepare for switching the field and scalar code to modinv. * **Make field/scalar code use the new modinv modules for inverses** Actually switch over. * **Add extra modular inverse tests** This adds modular inverse tests through the field/scalar interface, now that those use modinv. * **Remove unused Jacobi symbol support** No longer needed. * **Remove num/gmp support** Bye-bye. * 3 commits with further optimizations. ACKs for top commit: gmaxwell: ACK24ad04fc06
sanket1729: ACK24ad04fc06
real-or-random: ACK24ad04fc06
careful code review, some testing Tree-SHA512: 732fe29315965e43ec9a10ee8c71eceeb983c43fe443da9dc5380a5a11b5e40b06e98d6abf67b773b1de74571fd2014973c6376f3a0caeac85e0cf163ba2144b
This commit is contained in:
commit
26de4dfeb1
17
.cirrus.yml
17
.cirrus.yml
|
@ -1,6 +1,5 @@
|
|||
env:
|
||||
WIDEMUL: auto
|
||||
BIGNUM: auto
|
||||
STATICPRECOMPUTATION: yes
|
||||
ECMULTGENPRECISION: auto
|
||||
ASM: no
|
||||
|
@ -59,9 +58,8 @@ task:
|
|||
- env: {WIDEMUL: int128, RECOVERY: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int128, ECDH: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int128, ASM: x86_64}
|
||||
- env: {BIGNUM: no}
|
||||
- env: {BIGNUM: no, RECOVERY: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes}
|
||||
- env: {BIGNUM: no, STATICPRECOMPUTATION: no}
|
||||
- env: { RECOVERY: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes}
|
||||
- env: { STATICPRECOMPUTATION: no}
|
||||
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETEST: no, BENCH: no}
|
||||
- env: {CPPFLAGS: -DDETERMINISTIC}
|
||||
- env: {CFLAGS: -O0, CTIMETEST: no}
|
||||
|
@ -69,7 +67,6 @@ task:
|
|||
CFLAGS: "-fsanitize=undefined -fno-omit-frame-pointer"
|
||||
LDFLAGS: "-fsanitize=undefined -fno-omit-frame-pointer"
|
||||
UBSAN_OPTIONS: "print_stacktrace=1:halt_on_error=1"
|
||||
BIGNUM: no
|
||||
ASM: x86_64
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
|
@ -80,7 +77,6 @@ task:
|
|||
- env: { ECMULTGENPRECISION: 8 }
|
||||
- env:
|
||||
RUN_VALGRIND: yes
|
||||
BIGNUM: no
|
||||
ASM: x86_64
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
|
@ -115,12 +111,6 @@ task:
|
|||
CC: i686-linux-gnu-gcc
|
||||
- env:
|
||||
CC: clang --target=i686-pc-linux-gnu -isystem /usr/i686-linux-gnu/include
|
||||
matrix:
|
||||
- env:
|
||||
BIGNUM: gmp
|
||||
- env:
|
||||
BIGNUM: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
- ./ci/cirrus.sh
|
||||
<< : *CAT_LOGS
|
||||
|
@ -178,7 +168,7 @@ task:
|
|||
# If we haven't restored from cached (and just run brew install), this is a no-op.
|
||||
- brew link valgrind
|
||||
brew_script:
|
||||
- brew install automake libtool gmp gcc@9
|
||||
- brew install automake libtool gcc@9
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
- ./ci/cirrus.sh
|
||||
|
@ -195,7 +185,6 @@ task:
|
|||
HOST: s390x-linux-gnu
|
||||
BUILD:
|
||||
WITH_VALGRIND: no
|
||||
BIGNUM: no
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
EXPERIMENTAL: yes
|
||||
|
|
|
@ -14,8 +14,6 @@ noinst_HEADERS += src/scalar_8x32_impl.h
|
|||
noinst_HEADERS += src/scalar_low_impl.h
|
||||
noinst_HEADERS += src/group.h
|
||||
noinst_HEADERS += src/group_impl.h
|
||||
noinst_HEADERS += src/num_gmp.h
|
||||
noinst_HEADERS += src/num_gmp_impl.h
|
||||
noinst_HEADERS += src/ecdsa.h
|
||||
noinst_HEADERS += src/ecdsa_impl.h
|
||||
noinst_HEADERS += src/eckey.h
|
||||
|
@ -26,14 +24,16 @@ noinst_HEADERS += src/ecmult_const.h
|
|||
noinst_HEADERS += src/ecmult_const_impl.h
|
||||
noinst_HEADERS += src/ecmult_gen.h
|
||||
noinst_HEADERS += src/ecmult_gen_impl.h
|
||||
noinst_HEADERS += src/num.h
|
||||
noinst_HEADERS += src/num_impl.h
|
||||
noinst_HEADERS += src/field_10x26.h
|
||||
noinst_HEADERS += src/field_10x26_impl.h
|
||||
noinst_HEADERS += src/field_5x52.h
|
||||
noinst_HEADERS += src/field_5x52_impl.h
|
||||
noinst_HEADERS += src/field_5x52_int128_impl.h
|
||||
noinst_HEADERS += src/field_5x52_asm_impl.h
|
||||
noinst_HEADERS += src/modinv32.h
|
||||
noinst_HEADERS += src/modinv32_impl.h
|
||||
noinst_HEADERS += src/modinv64.h
|
||||
noinst_HEADERS += src/modinv64_impl.h
|
||||
noinst_HEADERS += src/assumptions.h
|
||||
noinst_HEADERS += src/util.h
|
||||
noinst_HEADERS += src/scratch.h
|
||||
|
|
|
@ -34,11 +34,11 @@ Implementation details
|
|||
* Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
|
||||
* Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
|
||||
* Using 10 26-bit limbs (including hand-optimized assembly for 32-bit ARM, by Wladimir J. van der Laan).
|
||||
* Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
|
||||
* Scalar operations
|
||||
* Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
|
||||
* Using 4 64-bit limbs (relying on __int128 support in the compiler).
|
||||
* Using 8 32-bit limbs.
|
||||
* Modular inverses (both field elements and scalars) based on [safegcd](https://gcd.cr.yp.to/index.html) with some modifications, and a variable-time variant (by Peter Dettman).
|
||||
* Group operations
|
||||
* Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
|
||||
* Use addition between points in Jacobian and affine coordinates where possible.
|
||||
|
|
|
@ -75,19 +75,6 @@ if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then
|
|||
fi
|
||||
])
|
||||
|
||||
dnl
|
||||
AC_DEFUN([SECP_GMP_CHECK],[
|
||||
if test x"$has_gmp" != x"yes"; then
|
||||
CPPFLAGS_TEMP="$CPPFLAGS"
|
||||
CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS"
|
||||
LIBS_TEMP="$LIBS"
|
||||
LIBS="$GMP_LIBS $LIBS"
|
||||
AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])])
|
||||
CPPFLAGS="$CPPFLAGS_TEMP"
|
||||
LIBS="$LIBS_TEMP"
|
||||
fi
|
||||
])
|
||||
|
||||
AC_DEFUN([SECP_VALGRIND_CHECK],[
|
||||
if test x"$has_valgrind" != x"yes"; then
|
||||
CPPFLAGS_TEMP="$CPPFLAGS"
|
||||
|
|
|
@ -14,7 +14,7 @@ valgrind --version || true
|
|||
|
||||
./configure \
|
||||
--enable-experimental="$EXPERIMENTAL" \
|
||||
--with-test-override-wide-multiply="$WIDEMUL" --with-bignum="$BIGNUM" --with-asm="$ASM" \
|
||||
--with-test-override-wide-multiply="$WIDEMUL" --with-asm="$ASM" \
|
||||
--enable-ecmult-static-precomputation="$STATICPRECOMPUTATION" --with-ecmult-gen-precision="$ECMULTGENPRECISION" \
|
||||
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
|
||||
--enable-module-schnorrsig="$SCHNORRSIG" \
|
||||
|
|
|
@ -8,6 +8,6 @@ RUN apt-get update
|
|||
RUN apt-get install --no-install-recommends --no-upgrade -y \
|
||||
git ca-certificates \
|
||||
make automake libtool pkg-config dpkg-dev valgrind qemu-user \
|
||||
gcc clang libc6-dbg libgmp-dev \
|
||||
gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 libgmp-dev:i386 \
|
||||
gcc clang libc6-dbg \
|
||||
gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 \
|
||||
gcc-s390x-linux-gnu libc6-dev-s390x-cross libc6-dbg:s390x
|
||||
|
|
58
configure.ac
58
configure.ac
|
@ -48,17 +48,12 @@ case $host_os in
|
|||
# in expected paths because they may conflict with system files. Ask
|
||||
# Homebrew where each one is located, then adjust paths accordingly.
|
||||
openssl_prefix=`$BREW --prefix openssl 2>/dev/null`
|
||||
gmp_prefix=`$BREW --prefix gmp 2>/dev/null`
|
||||
valgrind_prefix=`$BREW --prefix valgrind 2>/dev/null`
|
||||
if test x$openssl_prefix != x; then
|
||||
PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH"
|
||||
export PKG_CONFIG_PATH
|
||||
CRYPTO_CPPFLAGS="-I$openssl_prefix/include"
|
||||
fi
|
||||
if test x$gmp_prefix != x; then
|
||||
GMP_CPPFLAGS="-I$gmp_prefix/include"
|
||||
GMP_LIBS="-L$gmp_prefix/lib"
|
||||
fi
|
||||
if test x$valgrind_prefix != x; then
|
||||
VALGRIND_CPPFLAGS="-I$valgrind_prefix/include"
|
||||
fi
|
||||
|
@ -164,9 +159,6 @@ AC_ARG_ENABLE(external_default_callbacks,
|
|||
# Legal values are int64 (for [u]int64_t), int128 (for [unsigned] __int128), and auto (the default).
|
||||
AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto])
|
||||
|
||||
AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
|
||||
[bignum implementation to use [default=auto]])],[req_bignum=$withval], [req_bignum=auto])
|
||||
|
||||
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto],
|
||||
[assembly optimizations to use (experimental: arm) [default=auto]])],[req_asm=$withval], [req_asm=auto])
|
||||
|
||||
|
@ -245,32 +237,6 @@ else
|
|||
esac
|
||||
fi
|
||||
|
||||
if test x"$req_bignum" = x"auto"; then
|
||||
SECP_GMP_CHECK
|
||||
if test x"$has_gmp" = x"yes"; then
|
||||
set_bignum=gmp
|
||||
fi
|
||||
|
||||
if test x"$set_bignum" = x; then
|
||||
set_bignum=no
|
||||
fi
|
||||
else
|
||||
set_bignum=$req_bignum
|
||||
case $set_bignum in
|
||||
gmp)
|
||||
SECP_GMP_CHECK
|
||||
if test x"$has_gmp" != x"yes"; then
|
||||
AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available])
|
||||
fi
|
||||
;;
|
||||
no)
|
||||
;;
|
||||
*)
|
||||
AC_MSG_ERROR([invalid bignum implementation selection])
|
||||
;;
|
||||
esac
|
||||
fi
|
||||
|
||||
# Select assembly optimization
|
||||
use_external_asm=no
|
||||
|
||||
|
@ -308,24 +274,6 @@ auto)
|
|||
;;
|
||||
esac
|
||||
|
||||
# Select bignum implementation
|
||||
case $set_bignum in
|
||||
gmp)
|
||||
AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed])
|
||||
AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num])
|
||||
AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation])
|
||||
AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation])
|
||||
;;
|
||||
no)
|
||||
AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation])
|
||||
AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation])
|
||||
AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation])
|
||||
;;
|
||||
*)
|
||||
AC_MSG_ERROR([invalid bignum implementation])
|
||||
;;
|
||||
esac
|
||||
|
||||
# Set ecmult window size
|
||||
if test x"$req_ecmult_window" = x"auto"; then
|
||||
set_ecmult_window=15
|
||||
|
@ -390,11 +338,6 @@ else
|
|||
enable_openssl_tests=no
|
||||
fi
|
||||
|
||||
if test x"$set_bignum" = x"gmp"; then
|
||||
SECP_LIBS="$SECP_LIBS $GMP_LIBS"
|
||||
SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
|
||||
fi
|
||||
|
||||
if test x"$enable_valgrind" = x"yes"; then
|
||||
SECP_INCLUDES="$SECP_INCLUDES $VALGRIND_CPPFLAGS"
|
||||
fi
|
||||
|
@ -571,7 +514,6 @@ echo " module extrakeys = $enable_module_extrakeys"
|
|||
echo " module schnorrsig = $enable_module_schnorrsig"
|
||||
echo
|
||||
echo " asm = $set_asm"
|
||||
echo " bignum = $set_bignum"
|
||||
echo " ecmult window size = $set_ecmult_window"
|
||||
echo " ecmult gen prec. bits = $set_ecmult_gen_precision"
|
||||
# Hide test-only options unless they're used.
|
||||
|
|
|
@ -0,0 +1,750 @@
|
|||
# The safegcd implementation in libsecp256k1 explained
|
||||
|
||||
This document explains the modular inverse implementation in the `src/modinv*.h` files. It is based
|
||||
on the paper
|
||||
["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
|
||||
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
|
||||
|
||||
The actual implementation is in C of course, but for demonstration purposes Python3 is used here.
|
||||
Most implementation aspects and optimizations are explained, except those that depend on the specific
|
||||
number representation used in the C code.
|
||||
|
||||
## 1. Computing the Greatest Common Divisor (GCD) using divsteps
|
||||
|
||||
The algorithm from the paper (section 11), at a very high level, is this:
|
||||
|
||||
```python
|
||||
def gcd(f, g):
|
||||
"""Compute the GCD of an odd integer f and another integer g."""
|
||||
assert f & 1 # require f to be odd
|
||||
delta = 1 # additional state variable
|
||||
while g != 0:
|
||||
assert f & 1 # f will be odd in every iteration
|
||||
if delta > 0 and g & 1:
|
||||
delta, f, g = 1 - delta, g, (g - f) // 2
|
||||
elif g & 1:
|
||||
delta, f, g = 1 + delta, f, (g + f) // 2
|
||||
else:
|
||||
delta, f, g = 1 + delta, f, (g ) // 2
|
||||
return abs(f)
|
||||
```
|
||||
|
||||
It computes the greatest common divisor of an odd integer *f* and any integer *g*. Its inner loop
|
||||
keeps rewriting the variables *f* and *g* alongside a state variable *δ* that starts at *1*, until
|
||||
*g=0* is reached. At that point, *|f|* gives the GCD. Each of the transitions in the loop is called a
|
||||
"division step" (referred to as divstep in what follows).
|
||||
|
||||
For example, *gcd(21, 14)* would be computed as:
|
||||
- Start with *δ=1 f=21 g=14*
|
||||
- Take the third branch: *δ=2 f=21 g=7*
|
||||
- Take the first branch: *δ=-1 f=7 g=-7*
|
||||
- Take the second branch: *δ=0 f=7 g=0*
|
||||
- The answer *|f| = 7*.
|
||||
|
||||
Why it works:
|
||||
- Divsteps can be decomposed into two steps (see paragraph 8.2 in the paper):
|
||||
- (a) If *g* is odd, replace *(f,g)* with *(g,g-f)* or (f,g+f), resulting in an even *g*.
|
||||
- (b) Replace *(f,g)* with *(f,g/2)* (where *g* is guaranteed to be even).
|
||||
- Neither of those two operations change the GCD:
|
||||
- For (a), assume *gcd(f,g)=c*, then it must be the case that *f=a c* and *g=b c* for some integers *a*
|
||||
and *b*. As *(g,g-f)=(b c,(b-a)c)* and *(f,f+g)=(a c,(a+b)c)*, the result clearly still has
|
||||
common factor *c*. Reasoning in the other direction shows that no common factor can be added by
|
||||
doing so either.
|
||||
- For (b), we know that *f* is odd, so *gcd(f,g)* clearly has no factor *2*, and we can remove
|
||||
it from *g*.
|
||||
- The algorithm will eventually converge to *g=0*. This is proven in the paper (see theorem G.3).
|
||||
- It follows that eventually we find a final value *f'* for which *gcd(f,g) = gcd(f',0)*. As the
|
||||
gcd of *f'* and *0* is *|f'|* by definition, that is our answer.
|
||||
|
||||
Compared to more [traditional GCD algorithms](https://en.wikipedia.org/wiki/Euclidean_algorithm), this one has the property of only ever looking at
|
||||
the low-order bits of the variables to decide the next steps, and being easy to make
|
||||
constant-time (in more low-level languages than Python). The *δ* parameter is necessary to
|
||||
guide the algorithm towards shrinking the numbers' magnitudes without explicitly needing to look
|
||||
at high order bits.
|
||||
|
||||
Properties that will become important later:
|
||||
- Performing more divsteps than needed is not a problem, as *f* does not change anymore after *g=0*.
|
||||
- Only even numbers are divided by *2*. This means that when reasoning about it algebraically we
|
||||
do not need to worry about rounding.
|
||||
- At every point during the algorithm's execution the next *N* steps only depend on the bottom *N*
|
||||
bits of *f* and *g*, and on *δ*.
|
||||
|
||||
|
||||
## 2. From GCDs to modular inverses
|
||||
|
||||
We want an algorithm to compute the inverse *a* of *x* modulo *M*, i.e. the number a such that *a x=1
|
||||
mod M*. This inverse only exists if the GCD of *x* and *M* is *1*, but that is always the case if *M* is
|
||||
prime and *0 < x < M*. In what follows, assume that the modular inverse exists.
|
||||
It turns out this inverse can be computed as a side effect of computing the GCD by keeping track
|
||||
of how the internal variables can be written as linear combinations of the inputs at every step
|
||||
(see the [extended Euclidean algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm)).
|
||||
Since the GCD is *1*, such an algorithm will compute numbers *a* and *b* such that a x + b M = 1*.
|
||||
Taking that expression *mod M* gives *a x mod M = 1*, and we see that *a* is the modular inverse of *x
|
||||
mod M*.
|
||||
|
||||
A similar approach can be used to calculate modular inverses using the divsteps-based GCD
|
||||
algorithm shown above, if the modulus *M* is odd. To do so, compute *gcd(f=M,g=x)*, while keeping
|
||||
track of extra variables *d* and *e*, for which at every step *d = f/x (mod M)* and *e = g/x (mod M)*.
|
||||
*f/x* here means the number which multiplied with *x* gives *f mod M*. As *f* and *g* are initialized to *M*
|
||||
and *x* respectively, *d* and *e* just start off being *0* (*M/x mod M = 0/x mod M = 0*) and *1* (*x/x mod M
|
||||
= 1*).
|
||||
|
||||
```python
|
||||
def div2(M, x):
|
||||
"""Helper routine to compute x/2 mod M (where M is odd)."""
|
||||
assert M & 1
|
||||
if x & 1: # If x is odd, make it even by adding M.
|
||||
x += M
|
||||
# x must be even now, so a clean division by 2 is possible.
|
||||
return x // 2
|
||||
|
||||
def modinv(M, x):
|
||||
"""Compute the inverse of x mod M (given that it exists, and M is odd)."""
|
||||
assert M & 1
|
||||
delta, f, g, d, e = 1, M, x, 0, 1
|
||||
while g != 0:
|
||||
# Note that while division by two for f and g is only ever done on even inputs, this is
|
||||
# not true for d and e, so we need the div2 helper function.
|
||||
if delta > 0 and g & 1:
|
||||
delta, f, g, d, e = 1 - delta, g, (g - f) // 2, e, div2(M, e - d)
|
||||
elif g & 1:
|
||||
delta, f, g, d, e = 1 + delta, f, (g + f) // 2, d, div2(M, e + d)
|
||||
else:
|
||||
delta, f, g, d, e = 1 + delta, f, (g ) // 2, d, div2(M, e )
|
||||
# Verify that the invariants d=f/x mod M, e=g/x mod M are maintained.
|
||||
assert f % M == (d * x) % M
|
||||
assert g % M == (e * x) % M
|
||||
assert f == 1 or f == -1 # |f| is the GCD, it must be 1
|
||||
# Because of invariant d = f/x (mod M), 1/x = d/f (mod M). As |f|=1, d/f = d*f.
|
||||
return (d * f) % M
|
||||
```
|
||||
|
||||
Also note that this approach to track *d* and *e* throughout the computation to determine the inverse
|
||||
is different from the paper. There (see paragraph 12.1 in the paper) a transition matrix for the
|
||||
entire computation is determined (see section 3 below) and the inverse is computed from that.
|
||||
The approach here avoids the need for 2x2 matrix multiplications of various sizes, and appears to
|
||||
be faster at the level of optimization we're able to do in C.
|
||||
|
||||
|
||||
## 3. Batching multiple divsteps
|
||||
|
||||
Every divstep can be expressed as a matrix multiplication, applying a transition matrix *(1/2 t)*
|
||||
to both vectors *[f, g]* and *[d, e]* (see paragraph 8.1 in the paper):
|
||||
|
||||
```
|
||||
t = [ u, v ]
|
||||
[ q, r ]
|
||||
|
||||
[ out_f ] = (1/2 * t) * [ in_f ]
|
||||
[ out_g ] = [ in_g ]
|
||||
|
||||
[ out_d ] = (1/2 * t) * [ in_d ] (mod M)
|
||||
[ out_e ] [ in_e ]
|
||||
```
|
||||
|
||||
where *(u, v, q, r)* is *(0, 2, -1, 1)*, *(2, 0, 1, 1)*, or *(2, 0, 0, 1)*, depending on which branch is
|
||||
taken. As above, the resulting *f* and *g* are always integers.
|
||||
|
||||
Performing multiple divsteps corresponds to a multiplication with the product of all the
|
||||
individual divsteps' transition matrices. As each transition matrix consists of integers
|
||||
divided by *2*, the product of these matrices will consist of integers divided by *2<sup>N</sup>* (see also
|
||||
theorem 9.2 in the paper). These divisions are expensive when updating *d* and *e*, so we delay
|
||||
them: we compute the integer coefficients of the combined transition matrix scaled by *2<sup>N</sup>*, and
|
||||
do one division by *2<sup>N</sup>* as a final step:
|
||||
|
||||
```python
|
||||
def divsteps_n_matrix(delta, f, g):
|
||||
"""Compute delta and transition matrix t after N divsteps (multiplied by 2^N)."""
|
||||
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
|
||||
for _ in range(N):
|
||||
if delta > 0 and g & 1:
|
||||
delta, f, g, u, v, q, r = 1 - delta, g, (g - f) // 2, 2*q, 2*r, q-u, r-v
|
||||
elif g & 1:
|
||||
delta, f, g, u, v, q, r = 1 + delta, f, (g + f) // 2, 2*u, 2*v, q+u, r+v
|
||||
else:
|
||||
delta, f, g, u, v, q, r = 1 + delta, f, (g ) // 2, 2*u, 2*v, q , r
|
||||
return delta, (u, v, q, r)
|
||||
```
|
||||
|
||||
As the branches in the divsteps are completely determined by the bottom *N* bits of *f* and *g*, this
|
||||
function to compute the transition matrix only needs to see those bottom bits. Furthermore all
|
||||
intermediate results and outputs fit in *(N+1)*-bit numbers (unsigned for *f* and *g*; signed for *u*, *v*,
|
||||
*q*, and *r*) (see also paragraph 8.3 in the paper). This means that an implementation using 64-bit
|
||||
integers could set *N=62* and compute the full transition matrix for 62 steps at once without any
|
||||
big integer arithmetic at all. This is the reason why this algorithm is efficient: it only needs
|
||||
to update the full-size *f*, *g*, *d*, and *e* numbers once every *N* steps.
|
||||
|
||||
We still need functions to compute:
|
||||
|
||||
```
|
||||
[ out_f ] = (1/2^N * [ u, v ]) * [ in_f ]
|
||||
[ out_g ] ( [ q, r ]) [ in_g ]
|
||||
|
||||
[ out_d ] = (1/2^N * [ u, v ]) * [ in_d ] (mod M)
|
||||
[ out_e ] ( [ q, r ]) [ in_e ]
|
||||
```
|
||||
|
||||
Because the divsteps transformation only ever divides even numbers by two, the result of *t [f,g]* is always even. When *t* is a composition of *N* divsteps, it follows that the resulting *f*
|
||||
and *g* will be multiple of *2<sup>N</sup>*, and division by *2<sup>N</sup>* is simply shifting them down:
|
||||
|
||||
```python
|
||||
def update_fg(f, g, t):
|
||||
"""Multiply matrix t/2^N with [f, g]."""
|
||||
u, v, q, r = t
|
||||
cf, cg = u*f + v*g, q*f + r*g
|
||||
# (t / 2^N) should cleanly apply to [f,g] so the result of t*[f,g] should have N zero
|
||||
# bottom bits.
|
||||
assert cf % 2**N == 0
|
||||
assert cg % 2**N == 0
|
||||
return cf >> N, cg >> N
|
||||
```
|
||||
|
||||
The same is not true for *d* and *e*, and we need an equivalent of the `div2` function for division by *2<sup>N</sup> mod M*.
|
||||
This is easy if we have precomputed *1/M mod 2<sup>N</sup>* (which always exists for odd *M*):
|
||||
|
||||
```python
|
||||
def div2n(M, Mi, x):
|
||||
"""Compute x/2^N mod M, given Mi = 1/M mod 2^N."""
|
||||
assert (M * Mi) % 2**N == 1
|
||||
# Find a factor m such that m*M has the same bottom N bits as x. We want:
|
||||
# (m * M) mod 2^N = x mod 2^N
|
||||
# <=> m mod 2^N = (x / M) mod 2^N
|
||||
# <=> m mod 2^N = (x * Mi) mod 2^N
|
||||
m = (Mi * x) % 2**N
|
||||
# Subtract that multiple from x, cancelling its bottom N bits.
|
||||
x -= m * M
|
||||
# Now a clean division by 2^N is possible.
|
||||
assert x % 2**N == 0
|
||||
return (x >> N) % M
|
||||
|
||||
def update_de(d, e, t, M, Mi):
|
||||
"""Multiply matrix t/2^N with [d, e], modulo M."""
|
||||
u, v, q, r = t
|
||||
cd, ce = u*d + v*e, q*d + r*e
|
||||
return div2n(M, Mi, cd), div2n(M, Mi, ce)
|
||||
```
|
||||
|
||||
With all of those, we can write a version of `modinv` that performs *N* divsteps at once:
|
||||
|
||||
```python3
|
||||
def modinv(M, Mi, x):
|
||||
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
|
||||
assert M & 1
|
||||
delta, f, g, d, e = 1, M, x, 0, 1
|
||||
while g != 0:
|
||||
# Compute the delta and transition matrix t for the next N divsteps (this only needs
|
||||
# (N+1)-bit signed integer arithmetic).
|
||||
delta, t = divsteps_n_matrix(delta, f % 2**N, g % 2**N)
|
||||
# Apply the transition matrix t to [f, g]:
|
||||
f, g = update_fg(f, g, t)
|
||||
# Apply the transition matrix t to [d, e]:
|
||||
d, e = update_de(d, e, t, M, Mi)
|
||||
return (d * f) % M
|
||||
```
|
||||
|
||||
This means that in practice we'll always perform a multiple of *N* divsteps. This is not a problem
|
||||
because once *g=0*, further divsteps do not affect *f*, *g*, *d*, or *e* anymore (only *δ* keeps
|
||||
increasing). For variable time code such excess iterations will be mostly optimized away in
|
||||
section 6.
|
||||
|
||||
|
||||
## 4. Avoiding modulus operations
|
||||
|
||||
So far, there are two places where we compute a remainder of big numbers modulo *M*: at the end of
|
||||
`div2n` in every `update_de`, and at the very end of `modinv` after potentially negating *d* due to the
|
||||
sign of *f*. These are relatively expensive operations when done generically.
|
||||
|
||||
To deal with the modulus operation in `div2n`, we simply stop requiring *d* and *e* to be in range
|
||||
*[0,M)* all the time. Let's start by inlining `div2n` into `update_de`, and dropping the modulus
|
||||
operation at the end:
|
||||
|
||||
```python
|
||||
def update_de(d, e, t, M, Mi):
|
||||
"""Multiply matrix t/2^N with [d, e] mod M, given Mi=1/M mod 2^N."""
|
||||
u, v, q, r = t
|
||||
cd, ce = u*d + v*e, q*d + r*e
|
||||
# Cancel out bottom N bits of cd and ce.
|
||||
md = -((Mi * cd) % 2**N)
|
||||
me = -((Mi * ce) % 2**N)
|
||||
cd += md * M
|
||||
ce += me * M
|
||||
# And cleanly divide by 2**N.
|
||||
return cd >> N, ce >> N
|
||||
```
|
||||
|
||||
Let's look at bounds on the ranges of these numbers. It can be shown that *|u|+|v|* and *|q|+|r|*
|
||||
never exceed *2<sup>N</sup>* (see paragraph 8.3 in the paper), and thus a multiplication with *t* will have
|
||||
outputs whose absolute values are at most *2<sup>N</sup>* times the maximum absolute input value. In case the
|
||||
inputs *d* and *e* are in *(-M,M)*, which is certainly true for the initial values *d=0* and *e=1* assuming
|
||||
*M > 1*, the multiplication results in numbers in range *(-2<sup>N</sup>M,2<sup>N</sup>M)*. Subtracting less than *2<sup>N</sup>*
|
||||
times *M* to cancel out *N* bits brings that up to *(-2<sup>N+1</sup>M,2<sup>N</sup>M)*, and
|
||||
dividing by *2<sup>N</sup>* at the end takes it to *(-2M,M)*. Another application of `update_de` would take that
|
||||
to *(-3M,2M)*, and so forth. This progressive expansion of the variables' ranges can be
|
||||
counteracted by incrementing *d* and *e* by *M* whenever they're negative:
|
||||
|
||||
```python
|
||||
...
|
||||
if d < 0:
|
||||
d += M
|
||||
if e < 0:
|
||||
e += M
|
||||
cd, ce = u*d + v*e, q*d + r*e
|
||||
# Cancel out bottom N bits of cd and ce.
|
||||
...
|
||||
```
|
||||
|
||||
With inputs in *(-2M,M)*, they will first be shifted into range *(-M,M)*, which means that the
|
||||
output will again be in *(-2M,M)*, and this remains the case regardless of how many `update_de`
|
||||
invocations there are. In what follows, we will try to make this more efficient.
|
||||
|
||||
Note that increasing *d* by *M* is equal to incrementing *cd* by *u M* and *ce* by *q M*. Similarly,
|
||||
increasing *e* by *M* is equal to incrementing *cd* by *v M* and *ce* by *r M*. So we could instead write:
|
||||
|
||||
```python
|
||||
...
|
||||
cd, ce = u*d + v*e, q*d + r*e
|
||||
# Perform the equivalent of incrementing d, e by M when they're negative.
|
||||
if d < 0:
|
||||
cd += u*M
|
||||
ce += q*M
|
||||
if e < 0:
|
||||
cd += v*M
|
||||
ce += r*M
|
||||
# Cancel out bottom N bits of cd and ce.
|
||||
md = -((Mi * cd) % 2**N)
|
||||
me = -((Mi * ce) % 2**N)
|
||||
cd += md * M
|
||||
ce += me * M
|
||||
...
|
||||
```
|
||||
|
||||
Now note that we have two steps of corrections to *cd* and *ce* that add multiples of *M*: this
|
||||
increment, and the decrement that cancels out bottom bits. The second one depends on the first
|
||||
one, but they can still be efficiently combined by only computing the bottom bits of *cd* and *ce*
|
||||
at first, and using that to compute the final *md*, *me* values:
|
||||
|
||||
```python
|
||||
def update_de(d, e, t, M, Mi):
|
||||
"""Multiply matrix t/2^N with [d, e], modulo M."""
|
||||
u, v, q, r = t
|
||||
md, me = 0, 0
|
||||
# Compute what multiples of M to add to cd and ce.
|
||||
if d < 0:
|
||||
md += u
|
||||
me += q
|
||||
if e < 0:
|
||||
md += v
|
||||
me += r
|
||||
# Compute bottom N bits of t*[d,e] + M*[md,me].
|
||||
cd, ce = (u*d + v*e + md*M) % 2**N, (q*d + r*e + me*M) % 2**N
|
||||
# Correct md and me such that the bottom N bits of t*[d,e] + M*[md,me] are zero.
|
||||
md -= (Mi * cd) % 2**N
|
||||
me -= (Mi * ce) % 2**N
|
||||
# Do the full computation.
|
||||
cd, ce = u*d + v*e + md*M, q*d + r*e + me*M
|
||||
# And cleanly divide by 2**N.
|
||||
return cd >> N, ce >> N
|
||||
```
|
||||
|
||||
One last optimization: we can avoid the *md M* and *me M* multiplications in the bottom bits of *cd*
|
||||
and *ce* by moving them to the *md* and *me* correction:
|
||||
|
||||
```python
|
||||
...
|
||||
# Compute bottom N bits of t*[d,e].
|
||||
cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N
|
||||
# Correct md and me such that the bottom N bits of t*[d,e]+M*[md,me] are zero.
|
||||
# Note that this is not the same as {md = (-Mi * cd) % 2**N} etc. That would also result in N
|
||||
# zero bottom bits, but isn't guaranteed to be a reduction of [0,2^N) compared to the
|
||||
# previous md and me values, and thus would violate our bounds analysis.
|
||||
md -= (Mi*cd + md) % 2**N
|
||||
me -= (Mi*ce + me) % 2**N
|
||||
...
|
||||
```
|
||||
|
||||
The resulting function takes *d* and *e* in range *(-2M,M)* as inputs, and outputs values in the same
|
||||
range. That also means that the *d* value at the end of `modinv` will be in that range, while we want
|
||||
a result in *[0,M)*. To do that, we need a normalization function. It's easy to integrate the
|
||||
conditional negation of *d* (based on the sign of *f*) into it as well:
|
||||
|
||||
```python
|
||||
def normalize(sign, v, M):
|
||||
"""Compute sign*v mod M, where v is in range (-2*M,M); output in [0,M)."""
|
||||
assert sign == 1 or sign == -1
|
||||
# v in (-2*M,M)
|
||||
if v < 0:
|
||||
v += M
|
||||
# v in (-M,M). Now multiply v with sign (which can only be 1 or -1).
|
||||
if sign == -1:
|
||||
v = -v
|
||||
# v in (-M,M)
|
||||
if v < 0:
|
||||
v += M
|
||||
# v in [0,M)
|
||||
return v
|
||||
```
|
||||
|
||||
And calling it in `modinv` is simply:
|
||||
|
||||
```python
|
||||
...
|
||||
return normalize(f, d, M)
|
||||
```
|
||||
|
||||
|
||||
## 5. Constant-time operation
|
||||
|
||||
The primary selling point of the algorithm is fast constant-time operation. What code flow still
|
||||
depends on the input data so far?
|
||||
|
||||
- the number of iterations of the while *g ≠ 0* loop in `modinv`
|
||||
- the branches inside `divsteps_n_matrix`
|
||||
- the sign checks in `update_de`
|
||||
- the sign checks in `normalize`
|
||||
|
||||
To make the while loop in `modinv` constant time it can be replaced with a constant number of
|
||||
iterations. The paper proves (Theorem 11.2) that *741* divsteps are sufficient for any *256*-bit
|
||||
inputs, and [safegcd-bounds](https://github.com/sipa/safegcd-bounds) shows that the slightly better bound *724* is
|
||||
sufficient even. Given that every loop iteration performs *N* divsteps, it will run a total of
|
||||
*⌈724/N⌉* times.
|
||||
|
||||
To deal with the branches in `divsteps_n_matrix` we will replace them with constant-time bitwise
|
||||
operations (and hope the C compiler isn't smart enough to turn them back into branches; see
|
||||
`valgrind_ctime_test.c` for automated tests that this isn't the case). To do so, observe that a
|
||||
divstep can be written instead as (compare to the inner loop of `gcd` in section 1).
|
||||
|
||||
```python
|
||||
x = -f if delta > 0 else f # set x equal to (input) -f or f
|
||||
if g & 1:
|
||||
g += x # set g to (input) g-f or g+f
|
||||
if delta > 0:
|
||||
delta = -delta
|
||||
f += g # set f to (input) g (note that g was set to g-f before)
|
||||
delta += 1
|
||||
g >>= 1
|
||||
```
|
||||
|
||||
To convert the above to bitwise operations, we rely on a trick to negate conditionally: per the
|
||||
definition of negative numbers in two's complement, (*-v == ~v + 1*) holds for every number *v*. As
|
||||
*-1* in two's complement is all *1* bits, bitflipping can be expressed as xor with *-1*. It follows
|
||||
that *-v == (v ^ -1) - (-1)*. Thus, if we have a variable *c* that takes on values *0* or *-1*, then
|
||||
*(v ^ c) - c* is *v* if *c=0* and *-v* if *c=-1*.
|
||||
|
||||
Using this we can write:
|
||||
|
||||
```python
|
||||
x = -f if delta > 0 else f
|
||||
```
|
||||
|
||||
in constant-time form as:
|
||||
|
||||
```python
|
||||
c1 = (-delta) >> 63
|
||||
# Conditionally negate f based on c1:
|
||||
x = (f ^ c1) - c1
|
||||
```
|
||||
|
||||
To use that trick, we need a helper mask variable *c1* that resolves the condition *δ>0* to *-1*
|
||||
(if true) or *0* (if false). We compute *c1* using right shifting, which is equivalent to dividing by
|
||||
the specified power of *2* and rounding down (in Python, and also in C under the assumption of a typical two's complement system; see
|
||||
`assumptions.h` for tests that this is the case). Right shifting by *63* thus maps all
|
||||
numbers in range *[-2<sup>63</sup>,0)* to *-1*, and numbers in range *[0,2<sup>63</sup>)* to *0*.
|
||||
|
||||
Using the facts that *x&0=0* and *x&(-1)=x* (on two's complement systems again), we can write:
|
||||
|
||||
```python
|
||||
if g & 1:
|
||||
g += x
|
||||
```
|
||||
|
||||
as:
|
||||
|
||||
```python
|
||||
# Compute c2=0 if g is even and c2=-1 if g is odd.
|
||||
c2 = -(g & 1)
|
||||
# This masks out x if g is even, and leaves x be if g is odd.
|
||||
g += x & c2
|
||||
```
|
||||
|
||||
Using the conditional negation trick again we can write:
|
||||
|
||||
```python
|
||||
if g & 1:
|
||||
if delta > 0:
|
||||
delta = -delta
|
||||
```
|
||||
|
||||
as:
|
||||
|
||||
```python
|
||||
# Compute c3=-1 if g is odd and delta>0, and 0 otherwise.
|
||||
c3 = c1 & c2
|
||||
# Conditionally negate delta based on c3:
|
||||
delta = (delta ^ c3) - c3
|
||||
```
|
||||
|
||||
Finally:
|
||||
|
||||
```python
|
||||
if g & 1:
|
||||
if delta > 0:
|
||||
f += g
|
||||
```
|
||||
|
||||
becomes:
|
||||
|
||||
```python
|
||||
f += g & c3
|
||||
```
|
||||
|
||||
It turns out that this can be implemented more efficiently by applying the substitution
|
||||
*η=-δ*. In this representation, negating *δ* corresponds to negating *η*, and incrementing
|
||||
*δ* corresponds to decrementing *η*. This allows us to remove the negation in the *c1*
|
||||
computation:
|
||||
|
||||
```python
|
||||
# Compute a mask c1 for eta < 0, and compute the conditional negation x of f:
|
||||
c1 = eta >> 63
|
||||
x = (f ^ c1) - c1
|
||||
# Compute a mask c2 for odd g, and conditionally add x to g:
|
||||
c2 = -(g & 1)
|
||||
g += x & c2
|
||||
# Compute a mask c for (eta < 0) and odd (input) g, and use it to conditionally negate eta,
|
||||
# and add g to f:
|
||||
c3 = c1 & c2
|
||||
eta = (eta ^ c3) - c3
|
||||
f += g & c3
|
||||
# Incrementing delta corresponds to decrementing eta.
|
||||
eta -= 1
|
||||
g >>= 1
|
||||
```
|
||||
|
||||
By replacing the loop in `divsteps_n_matrix` with a variant of the divstep code above (extended to
|
||||
also apply all *f* operations to *u*, *v* and all *g* operations to *q*, *r*), a constant-time version of
|
||||
`divsteps_n_matrix` is obtained. The full code will be in section 7.
|
||||
|
||||
These bit fiddling tricks can also be used to make the conditional negations and additions in
|
||||
`update_de` and `normalize` constant-time.
|
||||
|
||||
|
||||
## 6. Variable-time optimizations
|
||||
|
||||
In section 5, we modified the `divsteps_n_matrix` function (and a few others) to be constant time.
|
||||
Constant time operations are only necessary when computing modular inverses of secret data. In
|
||||
other cases, it slows down calculations unnecessarily. In this section, we will construct a
|
||||
faster non-constant time `divsteps_n_matrix` function.
|
||||
|
||||
To do so, first consider yet another way of writing the inner loop of divstep operations in
|
||||
`gcd` from section 1. This decomposition is also explained in the paper in section 8.2.
|
||||
|
||||
```python
|
||||
for _ in range(N):
|
||||
if g & 1 and eta < 0:
|
||||
eta, f, g = -eta, g, -f
|
||||
if g & 1:
|
||||
g += f
|
||||
eta -= 1
|
||||
g >>= 1
|
||||
```
|
||||
|
||||
Whenever *g* is even, the loop only shifts *g* down and decreases *η*. When *g* ends in multiple zero
|
||||
bits, these iterations can be consolidated into one step. This requires counting the bottom zero
|
||||
bits efficiently, which is possible on most platforms; it is abstracted here as the function
|
||||
`count_trailing_zeros`.
|
||||
|
||||
```python
|
||||
def count_trailing_zeros(v):
|
||||
"""For a non-zero value v, find z such that v=(d<<z) for some odd d."""
|
||||
return (v & -v).bit_length() - 1
|
||||
|
||||
i = N # divsteps left to do
|
||||
while True:
|
||||
# Get rid of all bottom zeros at once. In the first iteration, g may be odd and the following
|
||||
# lines have no effect (until "if eta < 0").
|
||||
zeros = min(i, count_trailing_zeros(g))
|
||||
eta -= zeros
|
||||
g >>= zeros
|
||||
i -= zeros
|
||||
if i == 0:
|
||||
break
|
||||
# We know g is odd now
|
||||
if eta < 0:
|
||||
eta, f, g = -eta, g, -f
|
||||
g += f
|
||||
# g is even now, and the eta decrement and g shift will happen in the next loop.
|
||||
```
|
||||
|
||||
We can now remove multiple bottom *0* bits from *g* at once, but still need a full iteration whenever
|
||||
there is a bottom *1* bit. In what follows, we will get rid of multiple *1* bits simultaneously as
|
||||
well.
|
||||
|
||||
Observe that as long as *η ≥ 0*, the loop does not modify *f*. Instead, it cancels out bottom
|
||||
bits of *g* and shifts them out, and decreases *η* and *i* accordingly - interrupting only when *η*
|
||||
becomes negative, or when *i* reaches *0*. Combined, this is equivalent to adding a multiple of *f* to
|
||||
*g* to cancel out multiple bottom bits, and then shifting them out.
|
||||
|
||||
It is easy to find what that multiple is: we want a number *w* such that *g+w f* has a few bottom
|
||||
zero bits. If that number of bits is *L*, we want *g+w f mod 2<sup>L</sup> = 0*, or *w = -g/f mod 2<sup>L</sup>*. Since *f*
|
||||
is odd, such a *w* exists for any *L*. *L* cannot be more than *i* steps (as we'd finish the loop before
|
||||
doing more) or more than *η+1* steps (as we'd run `eta, f, g = -eta, g, f` at that point), but
|
||||
apart from that, we're only limited by the complexity of computing *w*.
|
||||
|
||||
This code demonstrates how to cancel up to 4 bits per step:
|
||||
|
||||
```python
|
||||
NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n
|
||||
i = N
|
||||
while True:
|
||||
zeros = min(i, count_trailing_zeros(g))
|
||||
eta -= zeros
|
||||
g >>= zeros
|
||||
i -= zeros
|
||||
if i == 0:
|
||||
break
|
||||
# We know g is odd now
|
||||
if eta < 0:
|
||||
eta, f, g = -eta, g, f
|
||||
# Compute limit on number of bits to cancel
|
||||
limit = min(min(eta + 1, i), 4)
|
||||
# Compute w = -g/f mod 2**limit, using the table value for -1/f mod 2**4. Note that f is
|
||||
# always odd, so its inverse modulo a power of two always exists.
|
||||
w = (g * NEGINV16[(f & 15) // 2]) % (2**limit)
|
||||
# As w = -g/f mod (2**limit), g+w*f mod 2**limit = 0 mod 2**limit.
|
||||
g += w * f
|
||||
assert g % (2**limit) == 0
|
||||
# The next iteration will now shift out at least limit bottom zero bits from g.
|
||||
```
|
||||
|
||||
By using a bigger table more bits can be cancelled at once. The table can also be implemented
|
||||
as a formula. Several formulas are known for computing modular inverses modulo powers of two;
|
||||
some can be found in Hacker's Delight second edition by Henry S. Warren, Jr. pages 245-247.
|
||||
Here we need the negated modular inverse, which is a simple transformation of those:
|
||||
|
||||
- Instead of a 3-bit table:
|
||||
- *-f* or *f ^ 6*
|
||||
- Instead of a 4-bit table:
|
||||
- *1 - f(f + 1)*
|
||||
- *-(f + (((f + 1) & 4) << 1))*
|
||||
- For larger tables the following technique can be used: if *w=-1/f mod 2<sup>L</sup>*, then *w(w f+2)* is
|
||||
*-1/f mod 2<sup>2L</sup>*. This allows extending the previous formulas (or tables). In particular we
|
||||
have this 6-bit function (based on the 3-bit function above):
|
||||
- *f(f<sup>2</sup> - 2)*
|
||||
|
||||
This loop, again extended to also handle *u*, *v*, *q*, and *r* alongside *f* and *g*, placed in
|
||||
`divsteps_n_matrix`, gives a significantly faster, but non-constant time version.
|
||||
|
||||
|
||||
## 7. Final Python version
|
||||
|
||||
All together we need the following functions:
|
||||
|
||||
- A way to compute the transition matrix in constant time, using the `divsteps_n_matrix` function
|
||||
from section 2, but with its loop replaced by a variant of the constant-time divstep from
|
||||
section 5, extended to handle *u*, *v*, *q*, *r*:
|
||||
|
||||
```python
|
||||
def divsteps_n_matrix(eta, f, g):
|
||||
"""Compute eta and transition matrix t after N divsteps (multiplied by 2^N)."""
|
||||
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
|
||||
for _ in range(N):
|
||||
c1 = eta >> 63
|
||||
# Compute x, y, z as conditionally-negated versions of f, u, v.
|
||||
x, y, z = (f ^ c1) - c1, (u ^ c1) - c1, (v ^ c1) - c1
|
||||
c2 = -(g & 1)
|
||||
# Conditionally add x, y, z to g, q, r.
|
||||
g, q, r = g + (x & c2), q + (y & c2), r + (z & c2)
|
||||
c1 &= c2 # reusing c1 here for the earlier c3 variable
|
||||
eta = (eta ^ c1) - (c1 + 1) # inlining the unconditional eta decrement here
|
||||
# Conditionally add g, q, r to f, u, v.
|
||||
f, u, v = f + (g & c1), u + (q & c1), v + (r & c1)
|
||||
# When shifting g down, don't shift q, r, as we construct a transition matrix multiplied
|
||||
# by 2^N. Instead, shift f's coefficients u and v up.
|
||||
g, u, v = g >> 1, u << 1, v << 1
|
||||
return eta, (u, v, q, r)
|
||||
```
|
||||
|
||||
- The functions to update *f* and *g*, and *d* and *e*, from section 2 and section 4, with the constant-time
|
||||
changes to `update_de` from section 5:
|
||||
|
||||
```python
|
||||
def update_fg(f, g, t):
|
||||
"""Multiply matrix t/2^N with [f, g]."""
|
||||
u, v, q, r = t
|
||||
cf, cg = u*f + v*g, q*f + r*g
|
||||
return cf >> N, cg >> N
|
||||
|
||||
def update_de(d, e, t, M, Mi):
|
||||
"""Multiply matrix t/2^N with [d, e], modulo M."""
|
||||
u, v, q, r = t
|
||||
d_sign, e_sign = d >> 257, e >> 257
|
||||
md, me = (u & d_sign) + (v & e_sign), (q & d_sign) + (r & e_sign)
|
||||
cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N
|
||||
md -= (Mi*cd + md) % 2**N
|
||||
me -= (Mi*ce + me) % 2**N
|
||||
cd, ce = u*d + v*e + Mi*md, q*d + r*e + Mi*me
|
||||
return cd >> N, ce >> N
|
||||
```
|
||||
|
||||
- The `normalize` function from section 4, made constant time as well:
|
||||
|
||||
```python
|
||||
def normalize(sign, v, M):
|
||||
"""Compute sign*v mod M, where v in (-2*M,M); output in [0,M)."""
|
||||
v_sign = v >> 257
|
||||
# Conditionally add M to v.
|
||||
v += M & v_sign
|
||||
c = (sign - 1) >> 1
|
||||
# Conditionally negate v.
|
||||
v = (v ^ c) - c
|
||||
v_sign = v >> 257
|
||||
# Conditionally add M to v again.
|
||||
v += M & v_sign
|
||||
return v
|
||||
```
|
||||
|
||||
- And finally the `modinv` function too, adapted to use *η* instead of *δ*, and using the fixed
|
||||
iteration count from section 5:
|
||||
|
||||
```python
|
||||
def modinv(M, Mi, x):
|
||||
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
|
||||
eta, f, g, d, e = -1, M, x, 0, 1
|
||||
for _ in range((724 + N - 1) // N):
|
||||
eta, t = divsteps_n_matrix(-eta, f % 2**N, g % 2**N)
|
||||
f, g = update_fg(f, g, t)
|
||||
d, e = update_de(d, e, t, M, Mi)
|
||||
return normalize(f, d, M)
|
||||
```
|
||||
|
||||
- To get a variable time version, replace the `divsteps_n_matrix` function with one that uses the
|
||||
divsteps loop from section 5, and a `modinv` version that calls it without the fixed iteration
|
||||
count:
|
||||
|
||||
```python
|
||||
NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n
|
||||
def divsteps_n_matrix_var(eta, f, g):
|
||||
"""Compute eta and transition matrix t after N divsteps (multiplied by 2^N)."""
|
||||
u, v, q, r = 1, 0, 0, 1
|
||||
i = N
|
||||
while True:
|
||||
zeros = min(i, count_trailing_zeros(g))
|
||||
eta, i = eta - zeros, i - zeros
|
||||
g, u, v = g >> zeros, u << zeros, v << zeros
|
||||
if i == 0:
|
||||
break
|
||||
if eta < 0:
|
||||
eta, f, u, v, g, q, r = -eta, g, q, r, -f, -u, -v
|
||||
limit = min(min(eta + 1, i), 4)
|
||||
w = (g * NEGINV16[(f & 15) // 2]) % (2**limit)
|
||||
g, q, r = g + w*f, q + w*u, r + w*v
|
||||
return eta, (u, v, q, r)
|
||||
|
||||
def modinv_var(M, Mi, x):
|
||||
"""Compute the modular inverse of x mod M, given Mi = 1/M mod 2^N."""
|
||||
eta, f, g, d, e = -1, M, x, 0, 1
|
||||
while g != 0:
|
||||
eta, t = divsteps_n_matrix_var(eta, f % 2**N, g % 2**N)
|
||||
f, g = update_fg(f, g, t)
|
||||
d, e = update_de(d, e, t, M, Mi)
|
||||
return normalize(f, d, Mi)
|
||||
```
|
|
@ -13,19 +13,10 @@
|
|||
#undef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
#undef USE_EXTERNAL_ASM
|
||||
#undef USE_EXTERNAL_DEFAULT_CALLBACKS
|
||||
#undef USE_FIELD_INV_BUILTIN
|
||||
#undef USE_FIELD_INV_NUM
|
||||
#undef USE_NUM_GMP
|
||||
#undef USE_NUM_NONE
|
||||
#undef USE_SCALAR_INV_BUILTIN
|
||||
#undef USE_SCALAR_INV_NUM
|
||||
#undef USE_FORCE_WIDEMUL_INT64
|
||||
#undef USE_FORCE_WIDEMUL_INT128
|
||||
#undef ECMULT_WINDOW_SIZE
|
||||
|
||||
#define USE_NUM_NONE 1
|
||||
#define USE_FIELD_INV_BUILTIN 1
|
||||
#define USE_SCALAR_INV_BUILTIN 1
|
||||
#define USE_WIDEMUL_64 1
|
||||
#define ECMULT_WINDOW_SIZE 15
|
||||
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
|
||||
#include "util.h"
|
||||
#include "hash_impl.h"
|
||||
#include "num_impl.h"
|
||||
#include "field_impl.h"
|
||||
#include "group_impl.h"
|
||||
#include "scalar_impl.h"
|
||||
|
|
|
@ -10,7 +10,6 @@
|
|||
#include "assumptions.h"
|
||||
#include "util.h"
|
||||
#include "hash_impl.h"
|
||||
#include "num_impl.h"
|
||||
#include "field_impl.h"
|
||||
#include "group_impl.h"
|
||||
#include "scalar_impl.h"
|
||||
|
@ -99,15 +98,6 @@ void bench_scalar_negate(void* arg, int iters) {
|
|||
}
|
||||
}
|
||||
|
||||
void bench_scalar_sqr(void* arg, int iters) {
|
||||
int i;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
secp256k1_scalar_sqr(&data->scalar[0], &data->scalar[0]);
|
||||
}
|
||||
}
|
||||
|
||||
void bench_scalar_mul(void* arg, int iters) {
|
||||
int i;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
|
@ -255,26 +245,6 @@ void bench_group_add_affine_var(void* arg, int iters) {
|
|||
}
|
||||
}
|
||||
|
||||
void bench_group_jacobi_var(void* arg, int iters) {
|
||||
int i, j = 0;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
j += secp256k1_gej_has_quad_y_var(&data->gej[0]);
|
||||
/* Vary the Y and Z coordinates of the input (the X coordinate doesn't matter to
|
||||
secp256k1_gej_has_quad_y_var). Note that the resulting coordinates will
|
||||
generally not correspond to a point on the curve, but this is not a problem
|
||||
for the code being benchmarked here. Adding and normalizing have less
|
||||
overhead than EC operations (which could guarantee the point remains on the
|
||||
curve). */
|
||||
secp256k1_fe_add(&data->gej[0].y, &data->fe[1]);
|
||||
secp256k1_fe_add(&data->gej[0].z, &data->fe[2]);
|
||||
secp256k1_fe_normalize_var(&data->gej[0].y);
|
||||
secp256k1_fe_normalize_var(&data->gej[0].z);
|
||||
}
|
||||
CHECK(j <= iters);
|
||||
}
|
||||
|
||||
void bench_group_to_affine_var(void* arg, int iters) {
|
||||
int i;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
|
@ -282,8 +252,10 @@ void bench_group_to_affine_var(void* arg, int iters) {
|
|||
for (i = 0; i < iters; ++i) {
|
||||
secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
|
||||
/* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
|
||||
Similar to bench_group_jacobi_var, this approach does not result in
|
||||
coordinates of points on the curve. */
|
||||
Note that the resulting coordinates will generally not correspond to a point
|
||||
on the curve, but this is not a problem for the code being benchmarked here.
|
||||
Adding and normalizing have less overhead than EC operations (which could
|
||||
guarantee the point remains on the curve). */
|
||||
secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
|
||||
secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
|
||||
secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
|
||||
|
@ -369,35 +341,16 @@ void bench_context_sign(void* arg, int iters) {
|
|||
}
|
||||
}
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
void bench_num_jacobi(void* arg, int iters) {
|
||||
int i, j = 0;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
secp256k1_num nx, na, norder;
|
||||
|
||||
secp256k1_scalar_get_num(&nx, &data->scalar[0]);
|
||||
secp256k1_scalar_order_get_num(&norder);
|
||||
secp256k1_scalar_get_num(&na, &data->scalar[1]);
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
j += secp256k1_num_jacobi(&nx, &norder);
|
||||
secp256k1_num_add(&nx, &nx, &na);
|
||||
}
|
||||
CHECK(j <= iters);
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
bench_inv data;
|
||||
int iters = get_iters(20000);
|
||||
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
|
||||
|
||||
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
|
||||
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
|
||||
|
@ -411,7 +364,6 @@ int main(int argc, char **argv) {
|
|||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, iters);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
|
||||
|
||||
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
|
||||
|
@ -424,8 +376,5 @@ int main(int argc, char **argv) {
|
|||
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000);
|
||||
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100);
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, iters*10);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
#ifndef SECP256K1_ECMULT_H
|
||||
#define SECP256K1_ECMULT_H
|
||||
|
||||
#include "num.h"
|
||||
#include "group.h"
|
||||
#include "scalar.h"
|
||||
#include "scratch.h"
|
||||
|
|
|
@ -104,9 +104,6 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
|
|||
* itself. */
|
||||
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Checks whether a field element is a quadratic residue. */
|
||||
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
|
||||
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include "util.h"
|
||||
#include "field.h"
|
||||
#include "modinv32_impl.h"
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
|
@ -1164,4 +1165,92 @@ static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const se
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_from_signed30(secp256k1_fe *r, const secp256k1_modinv32_signed30 *a) {
|
||||
const uint32_t M26 = UINT32_MAX >> 6;
|
||||
const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4],
|
||||
a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8];
|
||||
|
||||
/* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and
|
||||
* have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8).
|
||||
*/
|
||||
VERIFY_CHECK(a0 >> 30 == 0);
|
||||
VERIFY_CHECK(a1 >> 30 == 0);
|
||||
VERIFY_CHECK(a2 >> 30 == 0);
|
||||
VERIFY_CHECK(a3 >> 30 == 0);
|
||||
VERIFY_CHECK(a4 >> 30 == 0);
|
||||
VERIFY_CHECK(a5 >> 30 == 0);
|
||||
VERIFY_CHECK(a6 >> 30 == 0);
|
||||
VERIFY_CHECK(a7 >> 30 == 0);
|
||||
VERIFY_CHECK(a8 >> 16 == 0);
|
||||
|
||||
r->n[0] = a0 & M26;
|
||||
r->n[1] = (a0 >> 26 | a1 << 4) & M26;
|
||||
r->n[2] = (a1 >> 22 | a2 << 8) & M26;
|
||||
r->n[3] = (a2 >> 18 | a3 << 12) & M26;
|
||||
r->n[4] = (a3 >> 14 | a4 << 16) & M26;
|
||||
r->n[5] = (a4 >> 10 | a5 << 20) & M26;
|
||||
r->n[6] = (a5 >> 6 | a6 << 24) & M26;
|
||||
r->n[7] = (a6 >> 2 ) & M26;
|
||||
r->n[8] = (a6 >> 28 | a7 << 2) & M26;
|
||||
r->n[9] = (a7 >> 24 | a8 << 6);
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_fe *a) {
|
||||
const uint32_t M30 = UINT32_MAX >> 2;
|
||||
const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4],
|
||||
a5 = a->n[5], a6 = a->n[6], a7 = a->n[7], a8 = a->n[8], a9 = a->n[9];
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
|
||||
r->v[0] = (a0 | a1 << 26) & M30;
|
||||
r->v[1] = (a1 >> 4 | a2 << 22) & M30;
|
||||
r->v[2] = (a2 >> 8 | a3 << 18) & M30;
|
||||
r->v[3] = (a3 >> 12 | a4 << 14) & M30;
|
||||
r->v[4] = (a4 >> 16 | a5 << 10) & M30;
|
||||
r->v[5] = (a5 >> 20 | a6 << 6) & M30;
|
||||
r->v[6] = (a6 >> 24 | a7 << 2
|
||||
| a8 << 28) & M30;
|
||||
r->v[7] = (a8 >> 2 | a9 << 24) & M30;
|
||||
r->v[8] = a9 >> 6;
|
||||
}
|
||||
|
||||
static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_fe = {
|
||||
{{-0x3D1, -4, 0, 0, 0, 0, 0, 0, 65536}},
|
||||
0x2DDACACFL
|
||||
};
|
||||
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv32_signed30 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize(&tmp);
|
||||
secp256k1_fe_to_signed30(&s, &tmp);
|
||||
secp256k1_modinv32(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed30(r, &s);
|
||||
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv32_signed30 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize_var(&tmp);
|
||||
secp256k1_fe_to_signed30(&s, &tmp);
|
||||
secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed30(r, &s);
|
||||
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
|
||||
#include "util.h"
|
||||
#include "field.h"
|
||||
#include "modinv64_impl.h"
|
||||
|
||||
#if defined(USE_ASM_X86_64)
|
||||
#include "field_5x52_asm_impl.h"
|
||||
|
@ -498,4 +499,80 @@ static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const se
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a) {
|
||||
const uint64_t M52 = UINT64_MAX >> 12;
|
||||
const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
|
||||
|
||||
/* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
|
||||
* have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
|
||||
*/
|
||||
VERIFY_CHECK(a0 >> 62 == 0);
|
||||
VERIFY_CHECK(a1 >> 62 == 0);
|
||||
VERIFY_CHECK(a2 >> 62 == 0);
|
||||
VERIFY_CHECK(a3 >> 62 == 0);
|
||||
VERIFY_CHECK(a4 >> 8 == 0);
|
||||
|
||||
r->n[0] = a0 & M52;
|
||||
r->n[1] = (a0 >> 52 | a1 << 10) & M52;
|
||||
r->n[2] = (a1 >> 42 | a2 << 20) & M52;
|
||||
r->n[3] = (a2 >> 32 | a3 << 30) & M52;
|
||||
r->n[4] = (a3 >> 22 | a4 << 40);
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a) {
|
||||
const uint64_t M62 = UINT64_MAX >> 2;
|
||||
const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
|
||||
r->v[0] = (a0 | a1 << 52) & M62;
|
||||
r->v[1] = (a1 >> 10 | a2 << 42) & M62;
|
||||
r->v[2] = (a2 >> 20 | a3 << 32) & M62;
|
||||
r->v[3] = (a3 >> 30 | a4 << 22) & M62;
|
||||
r->v[4] = a4 >> 40;
|
||||
}
|
||||
|
||||
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = {
|
||||
{{-0x1000003D1LL, 0, 0, 0, 256}},
|
||||
0x27C7F6E22DDACACFLL
|
||||
};
|
||||
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv64_signed62 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize(&tmp);
|
||||
secp256k1_fe_to_signed62(&s, &tmp);
|
||||
secp256k1_modinv64(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed62(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv64_signed62 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize_var(&tmp);
|
||||
secp256k1_fe_to_signed62(&s, &tmp);
|
||||
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed62(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
|
||||
|
|
153
src/field_impl.h
153
src/field_impl.h
|
@ -12,7 +12,6 @@
|
|||
#endif
|
||||
|
||||
#include "util.h"
|
||||
#include "num.h"
|
||||
|
||||
#if defined(SECP256K1_WIDEMUL_INT128)
|
||||
#include "field_5x52_impl.h"
|
||||
|
@ -136,158 +135,6 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
|
|||
return secp256k1_fe_equal(&t1, a);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
int j;
|
||||
|
||||
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
|
||||
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
|
||||
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
|
||||
*/
|
||||
|
||||
secp256k1_fe_sqr(&x2, a);
|
||||
secp256k1_fe_mul(&x2, &x2, a);
|
||||
|
||||
secp256k1_fe_sqr(&x3, &x2);
|
||||
secp256k1_fe_mul(&x3, &x3, a);
|
||||
|
||||
x6 = x3;
|
||||
for (j=0; j<3; j++) {
|
||||
secp256k1_fe_sqr(&x6, &x6);
|
||||
}
|
||||
secp256k1_fe_mul(&x6, &x6, &x3);
|
||||
|
||||
x9 = x6;
|
||||
for (j=0; j<3; j++) {
|
||||
secp256k1_fe_sqr(&x9, &x9);
|
||||
}
|
||||
secp256k1_fe_mul(&x9, &x9, &x3);
|
||||
|
||||
x11 = x9;
|
||||
for (j=0; j<2; j++) {
|
||||
secp256k1_fe_sqr(&x11, &x11);
|
||||
}
|
||||
secp256k1_fe_mul(&x11, &x11, &x2);
|
||||
|
||||
x22 = x11;
|
||||
for (j=0; j<11; j++) {
|
||||
secp256k1_fe_sqr(&x22, &x22);
|
||||
}
|
||||
secp256k1_fe_mul(&x22, &x22, &x11);
|
||||
|
||||
x44 = x22;
|
||||
for (j=0; j<22; j++) {
|
||||
secp256k1_fe_sqr(&x44, &x44);
|
||||
}
|
||||
secp256k1_fe_mul(&x44, &x44, &x22);
|
||||
|
||||
x88 = x44;
|
||||
for (j=0; j<44; j++) {
|
||||
secp256k1_fe_sqr(&x88, &x88);
|
||||
}
|
||||
secp256k1_fe_mul(&x88, &x88, &x44);
|
||||
|
||||
x176 = x88;
|
||||
for (j=0; j<88; j++) {
|
||||
secp256k1_fe_sqr(&x176, &x176);
|
||||
}
|
||||
secp256k1_fe_mul(&x176, &x176, &x88);
|
||||
|
||||
x220 = x176;
|
||||
for (j=0; j<44; j++) {
|
||||
secp256k1_fe_sqr(&x220, &x220);
|
||||
}
|
||||
secp256k1_fe_mul(&x220, &x220, &x44);
|
||||
|
||||
x223 = x220;
|
||||
for (j=0; j<3; j++) {
|
||||
secp256k1_fe_sqr(&x223, &x223);
|
||||
}
|
||||
secp256k1_fe_mul(&x223, &x223, &x3);
|
||||
|
||||
/* The final result is then assembled using a sliding window over the blocks. */
|
||||
|
||||
t1 = x223;
|
||||
for (j=0; j<23; j++) {
|
||||
secp256k1_fe_sqr(&t1, &t1);
|
||||
}
|
||||
secp256k1_fe_mul(&t1, &t1, &x22);
|
||||
for (j=0; j<5; j++) {
|
||||
secp256k1_fe_sqr(&t1, &t1);
|
||||
}
|
||||
secp256k1_fe_mul(&t1, &t1, a);
|
||||
for (j=0; j<3; j++) {
|
||||
secp256k1_fe_sqr(&t1, &t1);
|
||||
}
|
||||
secp256k1_fe_mul(&t1, &t1, &x2);
|
||||
for (j=0; j<2; j++) {
|
||||
secp256k1_fe_sqr(&t1, &t1);
|
||||
}
|
||||
secp256k1_fe_mul(r, a, &t1);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#if defined(USE_FIELD_INV_BUILTIN)
|
||||
secp256k1_fe_inv(r, a);
|
||||
#elif defined(USE_FIELD_INV_NUM)
|
||||
secp256k1_num n, m;
|
||||
static const secp256k1_fe negone = SECP256K1_FE_CONST(
|
||||
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
||||
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
|
||||
);
|
||||
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
||||
static const unsigned char prime[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
|
||||
};
|
||||
unsigned char b[32];
|
||||
int res;
|
||||
secp256k1_fe c = *a;
|
||||
secp256k1_fe_normalize_var(&c);
|
||||
secp256k1_fe_get_b32(b, &c);
|
||||
secp256k1_num_set_bin(&n, b, 32);
|
||||
secp256k1_num_set_bin(&m, prime, 32);
|
||||
secp256k1_num_mod_inverse(&n, &n, &m);
|
||||
secp256k1_num_get_bin(b, 32, &n);
|
||||
res = secp256k1_fe_set_b32(r, b);
|
||||
(void)res;
|
||||
VERIFY_CHECK(res);
|
||||
/* Verify the result is the (unique) valid inverse using non-GMP code. */
|
||||
secp256k1_fe_mul(&c, &c, r);
|
||||
secp256k1_fe_add(&c, &negone);
|
||||
CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
|
||||
#else
|
||||
#error "Please select field inverse implementation"
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
|
||||
#ifndef USE_NUM_NONE
|
||||
unsigned char b[32];
|
||||
secp256k1_num n;
|
||||
secp256k1_num m;
|
||||
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
||||
static const unsigned char prime[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
|
||||
};
|
||||
|
||||
secp256k1_fe c = *a;
|
||||
secp256k1_fe_normalize_var(&c);
|
||||
secp256k1_fe_get_b32(b, &c);
|
||||
secp256k1_num_set_bin(&n, b, 32);
|
||||
secp256k1_num_set_bin(&m, prime, 32);
|
||||
return secp256k1_num_jacobi(&n, &m) >= 0;
|
||||
#else
|
||||
secp256k1_fe r;
|
||||
return secp256k1_fe_sqrt(&r, a);
|
||||
#endif
|
||||
}
|
||||
|
||||
static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
||||
|
||||
#endif /* SECP256K1_FIELD_IMPL_H */
|
||||
|
|
10
src/group.h
10
src/group.h
|
@ -7,7 +7,6 @@
|
|||
#ifndef SECP256K1_GROUP_H
|
||||
#define SECP256K1_GROUP_H
|
||||
|
||||
#include "num.h"
|
||||
#include "field.h"
|
||||
|
||||
/** A group element of the secp256k1 curve, in affine coordinates. */
|
||||
|
@ -43,12 +42,6 @@ typedef struct {
|
|||
/** Set a group element equal to the point with given X and Y coordinates */
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
|
||||
|
||||
/** Set a group element (affine) equal to the point with the given X coordinate
|
||||
* and a Y coordinate that is a quadratic residue modulo p. The return value
|
||||
* is true iff a coordinate with the given X coordinate exists.
|
||||
*/
|
||||
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
|
||||
|
||||
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
|
||||
* for Y. Return value indicates whether the result is valid. */
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
|
||||
|
@ -96,9 +89,6 @@ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
|
|||
/** Check whether a group element is the point at infinity. */
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
|
||||
|
||||
/** Check whether a group element's y coordinate is a quadratic residue. */
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
|
||||
|
||||
/** Set r equal to the double of a. Constant time. */
|
||||
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
|
||||
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
#ifndef SECP256K1_GROUP_IMPL_H
|
||||
#define SECP256K1_GROUP_IMPL_H
|
||||
|
||||
#include "num.h"
|
||||
#include "field.h"
|
||||
#include "group.h"
|
||||
|
||||
|
@ -207,18 +206,14 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
|
|||
secp256k1_fe_clear(&r->y);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
secp256k1_fe x2, x3;
|
||||
r->x = *x;
|
||||
secp256k1_fe_sqr(&x2, x);
|
||||
secp256k1_fe_mul(&x3, x, &x2);
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
|
||||
return secp256k1_fe_sqrt(&r->y, &x3);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
if (!secp256k1_ge_set_xquad(r, x)) {
|
||||
if (!secp256k1_fe_sqrt(&r->y, &x3)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_fe_normalize_var(&r->y);
|
||||
|
@ -655,20 +650,6 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
|||
secp256k1_fe_mul(&r->x, &r->x, &beta);
|
||||
}
|
||||
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe yz;
|
||||
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
|
||||
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
|
||||
is */
|
||||
secp256k1_fe_mul(&yz, &a->y, &a->z);
|
||||
return secp256k1_fe_is_quad_var(&yz);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
||||
#ifdef EXHAUSTIVE_TEST_ORDER
|
||||
secp256k1_gej out;
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2020 Peter Dettman *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODINV32_H
|
||||
#define SECP256K1_MODINV32_H
|
||||
|
||||
#if defined HAVE_CONFIG_H
|
||||
#include "libsecp256k1-config.h"
|
||||
#endif
|
||||
|
||||
#include "util.h"
|
||||
|
||||
/* A signed 30-bit limb representation of integers.
|
||||
*
|
||||
* Its value is sum(v[i] * 2^(30*i), i=0..8). */
|
||||
typedef struct {
|
||||
int32_t v[9];
|
||||
} secp256k1_modinv32_signed30;
|
||||
|
||||
typedef struct {
|
||||
/* The modulus in signed30 notation, must be odd and in [3, 2^256]. */
|
||||
secp256k1_modinv32_signed30 modulus;
|
||||
|
||||
/* modulus^{-1} mod 2^30 */
|
||||
uint32_t modulus_inv30;
|
||||
} secp256k1_modinv32_modinfo;
|
||||
|
||||
/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
|
||||
* If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
|
||||
* x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
|
||||
*
|
||||
* On output, all of x's limbs will be in [0, 2^30).
|
||||
*/
|
||||
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
|
||||
|
||||
/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
|
||||
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
|
||||
|
||||
#endif /* SECP256K1_MODINV32_H */
|
|
@ -0,0 +1,587 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2020 Peter Dettman *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODINV32_IMPL_H
|
||||
#define SECP256K1_MODINV32_IMPL_H
|
||||
|
||||
#include "modinv32.h"
|
||||
|
||||
#include "util.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
|
||||
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
|
||||
*
|
||||
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
|
||||
* implementation for N=30, using 30-bit signed limbs represented as int32_t.
|
||||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
static const secp256k1_modinv32_signed30 SECP256K1_SIGNED30_ONE = {{1}};
|
||||
|
||||
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^30). */
|
||||
static void secp256k1_modinv32_mul_30(secp256k1_modinv32_signed30 *r, const secp256k1_modinv32_signed30 *a, int alen, int32_t factor) {
|
||||
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
||||
int64_t c = 0;
|
||||
int i;
|
||||
for (i = 0; i < 8; ++i) {
|
||||
if (i < alen) c += (int64_t)a->v[i] * factor;
|
||||
r->v[i] = (int32_t)c & M30; c >>= 30;
|
||||
}
|
||||
if (8 < alen) c += (int64_t)a->v[8] * factor;
|
||||
VERIFY_CHECK(c == (int32_t)c);
|
||||
r->v[8] = (int32_t)c;
|
||||
}
|
||||
|
||||
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A consists of alen limbs; b has 9. */
|
||||
static int secp256k1_modinv32_mul_cmp_30(const secp256k1_modinv32_signed30 *a, int alen, const secp256k1_modinv32_signed30 *b, int32_t factor) {
|
||||
int i;
|
||||
secp256k1_modinv32_signed30 am, bm;
|
||||
secp256k1_modinv32_mul_30(&am, a, alen, 1); /* Normalize all but the top limb of a. */
|
||||
secp256k1_modinv32_mul_30(&bm, b, 9, factor);
|
||||
for (i = 0; i < 8; ++i) {
|
||||
/* Verify that all but the top limb of a and b are normalized. */
|
||||
VERIFY_CHECK(am.v[i] >> 30 == 0);
|
||||
VERIFY_CHECK(bm.v[i] >> 30 == 0);
|
||||
}
|
||||
for (i = 8; i >= 0; --i) {
|
||||
if (am.v[i] < bm.v[i]) return -1;
|
||||
if (am.v[i] > bm.v[i]) return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Take as input a signed30 number in range (-2*modulus,modulus), and add a multiple of the modulus
|
||||
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
|
||||
* process. The input must have limbs in range (-2^30,2^30). The output will have limbs in range
|
||||
* [0,2^30). */
|
||||
static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) {
|
||||
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
||||
int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
|
||||
r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
|
||||
int32_t cond_add, cond_negate;
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Verify that all limbs are in range (-2^30,2^30). */
|
||||
int i;
|
||||
for (i = 0; i < 9; ++i) {
|
||||
VERIFY_CHECK(r->v[i] >= -M30);
|
||||
VERIFY_CHECK(r->v[i] <= M30);
|
||||
}
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
|
||||
#endif
|
||||
|
||||
/* In a first step, add the modulus if the input is negative, and then negate if requested.
|
||||
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
|
||||
* limbs are in range (-2^30,2^30), this cannot overflow an int32_t. Note that the right
|
||||
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
|
||||
* indeed the behavior of the right shift operator). */
|
||||
cond_add = r8 >> 31;
|
||||
r0 += modinfo->modulus.v[0] & cond_add;
|
||||
r1 += modinfo->modulus.v[1] & cond_add;
|
||||
r2 += modinfo->modulus.v[2] & cond_add;
|
||||
r3 += modinfo->modulus.v[3] & cond_add;
|
||||
r4 += modinfo->modulus.v[4] & cond_add;
|
||||
r5 += modinfo->modulus.v[5] & cond_add;
|
||||
r6 += modinfo->modulus.v[6] & cond_add;
|
||||
r7 += modinfo->modulus.v[7] & cond_add;
|
||||
r8 += modinfo->modulus.v[8] & cond_add;
|
||||
cond_negate = sign >> 31;
|
||||
r0 = (r0 ^ cond_negate) - cond_negate;
|
||||
r1 = (r1 ^ cond_negate) - cond_negate;
|
||||
r2 = (r2 ^ cond_negate) - cond_negate;
|
||||
r3 = (r3 ^ cond_negate) - cond_negate;
|
||||
r4 = (r4 ^ cond_negate) - cond_negate;
|
||||
r5 = (r5 ^ cond_negate) - cond_negate;
|
||||
r6 = (r6 ^ cond_negate) - cond_negate;
|
||||
r7 = (r7 ^ cond_negate) - cond_negate;
|
||||
r8 = (r8 ^ cond_negate) - cond_negate;
|
||||
/* Propagate the top bits, to bring limbs back to range (-2^30,2^30). */
|
||||
r1 += r0 >> 30; r0 &= M30;
|
||||
r2 += r1 >> 30; r1 &= M30;
|
||||
r3 += r2 >> 30; r2 &= M30;
|
||||
r4 += r3 >> 30; r3 &= M30;
|
||||
r5 += r4 >> 30; r4 &= M30;
|
||||
r6 += r5 >> 30; r5 &= M30;
|
||||
r7 += r6 >> 30; r6 &= M30;
|
||||
r8 += r7 >> 30; r7 &= M30;
|
||||
|
||||
/* In a second step add the modulus again if the result is still negative, bringing r to range
|
||||
* [0,modulus). */
|
||||
cond_add = r8 >> 31;
|
||||
r0 += modinfo->modulus.v[0] & cond_add;
|
||||
r1 += modinfo->modulus.v[1] & cond_add;
|
||||
r2 += modinfo->modulus.v[2] & cond_add;
|
||||
r3 += modinfo->modulus.v[3] & cond_add;
|
||||
r4 += modinfo->modulus.v[4] & cond_add;
|
||||
r5 += modinfo->modulus.v[5] & cond_add;
|
||||
r6 += modinfo->modulus.v[6] & cond_add;
|
||||
r7 += modinfo->modulus.v[7] & cond_add;
|
||||
r8 += modinfo->modulus.v[8] & cond_add;
|
||||
/* And propagate again. */
|
||||
r1 += r0 >> 30; r0 &= M30;
|
||||
r2 += r1 >> 30; r1 &= M30;
|
||||
r3 += r2 >> 30; r2 &= M30;
|
||||
r4 += r3 >> 30; r3 &= M30;
|
||||
r5 += r4 >> 30; r4 &= M30;
|
||||
r6 += r5 >> 30; r5 &= M30;
|
||||
r7 += r6 >> 30; r6 &= M30;
|
||||
r8 += r7 >> 30; r7 &= M30;
|
||||
|
||||
r->v[0] = r0;
|
||||
r->v[1] = r1;
|
||||
r->v[2] = r2;
|
||||
r->v[3] = r3;
|
||||
r->v[4] = r4;
|
||||
r->v[5] = r5;
|
||||
r->v[6] = r6;
|
||||
r->v[7] = r7;
|
||||
r->v[8] = r8;
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(r0 >> 30 == 0);
|
||||
VERIFY_CHECK(r1 >> 30 == 0);
|
||||
VERIFY_CHECK(r2 >> 30 == 0);
|
||||
VERIFY_CHECK(r3 >> 30 == 0);
|
||||
VERIFY_CHECK(r4 >> 30 == 0);
|
||||
VERIFY_CHECK(r5 >> 30 == 0);
|
||||
VERIFY_CHECK(r6 >> 30 == 0);
|
||||
VERIFY_CHECK(r7 >> 30 == 0);
|
||||
VERIFY_CHECK(r8 >> 30 == 0);
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Data type for transition matrices (see section 3 of explanation).
|
||||
*
|
||||
* t = [ u v ]
|
||||
* [ q r ]
|
||||
*/
|
||||
typedef struct {
|
||||
int32_t u, v, q, r;
|
||||
} secp256k1_modinv32_trans2x2;
|
||||
|
||||
/* Compute the transition matrix and eta for 30 divsteps.
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
*
|
||||
* Implements the divsteps_n_matrix function from the explanation.
|
||||
*/
|
||||
static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
||||
/* u,v,q,r are the elements of the transformation matrix being built up,
|
||||
* starting with the identity matrix. Semantically they are signed integers
|
||||
* in range [-2^30,2^30], but here represented as unsigned mod 2^32. This
|
||||
* permits left shifting (which is UB for negative numbers). The range
|
||||
* being inside [-2^31,2^31) means that casting to signed works correctly.
|
||||
*/
|
||||
uint32_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint32_t c1, c2, f = f0, g = g0, x, y, z;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 30; ++i) {
|
||||
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||
/* Compute conditional masks for (eta < 0) and for (g & 1). */
|
||||
c1 = eta >> 31;
|
||||
c2 = -(g & 1);
|
||||
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
||||
x = (f ^ c1) - c1;
|
||||
y = (u ^ c1) - c1;
|
||||
z = (v ^ c1) - c1;
|
||||
/* Conditionally add x,y,z to g,q,r. */
|
||||
g += x & c2;
|
||||
q += y & c2;
|
||||
r += z & c2;
|
||||
/* In what follows, c1 is a condition mask for (eta < 0) and (g & 1). */
|
||||
c1 &= c2;
|
||||
/* Conditionally negate eta, and unconditionally subtract 1. */
|
||||
eta = (eta ^ c1) - (c1 + 1);
|
||||
/* Conditionally add g,q,r to f,u,v. */
|
||||
f += g & c1;
|
||||
u += q & c1;
|
||||
v += r & c1;
|
||||
/* Shifts */
|
||||
g >>= 1;
|
||||
u <<= 1;
|
||||
v <<= 1;
|
||||
/* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
|
||||
VERIFY_CHECK(eta >= -751 && eta <= 751);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int32_t)u;
|
||||
t->v = (int32_t)v;
|
||||
t->q = (int32_t)q;
|
||||
t->r = (int32_t)r;
|
||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 30 of them will have determinant 2^30. */
|
||||
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 30 divsteps (variable time).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
*
|
||||
* Implements the divsteps_n_matrix_var function from the explanation.
|
||||
*/
|
||||
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
||||
/* inv256[i] = -(2*i+1)^-1 (mod 256) */
|
||||
static const uint8_t inv256[128] = {
|
||||
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
|
||||
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
|
||||
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
|
||||
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
|
||||
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
|
||||
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
|
||||
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
|
||||
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
|
||||
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
|
||||
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
|
||||
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
|
||||
};
|
||||
|
||||
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
|
||||
uint32_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint32_t f = f0, g = g0, m;
|
||||
uint16_t w;
|
||||
int i = 30, limit, zeros;
|
||||
|
||||
for (;;) {
|
||||
/* Use a sentinel bit to count zeros only up to i. */
|
||||
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
|
||||
/* Perform zeros divsteps at once; they all just divide g by two. */
|
||||
g >>= zeros;
|
||||
u <<= zeros;
|
||||
v <<= zeros;
|
||||
eta -= zeros;
|
||||
i -= zeros;
|
||||
/* We're done once we've done 30 divsteps. */
|
||||
if (i == 0) break;
|
||||
VERIFY_CHECK((f & 1) == 1);
|
||||
VERIFY_CHECK((g & 1) == 1);
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
|
||||
/* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
|
||||
VERIFY_CHECK(eta >= -751 && eta <= 751);
|
||||
/* If eta is negative, negate it and replace f,g with g,-f. */
|
||||
if (eta < 0) {
|
||||
uint32_t tmp;
|
||||
eta = -eta;
|
||||
tmp = f; f = g; g = -tmp;
|
||||
tmp = u; u = q; q = -tmp;
|
||||
tmp = v; v = r; r = -tmp;
|
||||
}
|
||||
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
|
||||
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
|
||||
* can be done as its sign will flip once that happens. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
|
||||
VERIFY_CHECK(limit > 0 && limit <= 30);
|
||||
m = (UINT32_MAX >> (32 - limit)) & 255U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
|
||||
w = (g * inv256[(f >> 1) & 127]) & m;
|
||||
/* Do so. */
|
||||
g += f * w;
|
||||
q += u * w;
|
||||
r += v * w;
|
||||
VERIFY_CHECK((g & m) == 0);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int32_t)u;
|
||||
t->v = (int32_t)v;
|
||||
t->q = (int32_t)q;
|
||||
t->r = (int32_t)r;
|
||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 30 of them will have determinant 2^30. */
|
||||
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
|
||||
*
|
||||
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
||||
* (-2^30,2^30).
|
||||
*
|
||||
* This implements the update_de function from the explanation.
|
||||
*/
|
||||
static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) {
|
||||
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
||||
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
|
||||
int32_t di, ei, md, me, sd, se;
|
||||
int64_t cd, ce;
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
|
||||
VERIFY_CHECK((labs(u) + labs(v)) >= 0); /* |u|+|v| doesn't overflow */
|
||||
VERIFY_CHECK((labs(q) + labs(r)) >= 0); /* |q|+|r| doesn't overflow */
|
||||
VERIFY_CHECK((labs(u) + labs(v)) <= M30 + 1); /* |u|+|v| <= 2^30 */
|
||||
VERIFY_CHECK((labs(q) + labs(r)) <= M30 + 1); /* |q|+|r| <= 2^30 */
|
||||
#endif
|
||||
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
|
||||
sd = d->v[8] >> 31;
|
||||
se = e->v[8] >> 31;
|
||||
md = (u & sd) + (v & se);
|
||||
me = (q & sd) + (r & se);
|
||||
/* Begin computing t*[d,e]. */
|
||||
di = d->v[0];
|
||||
ei = e->v[0];
|
||||
cd = (int64_t)u * di + (int64_t)v * ei;
|
||||
ce = (int64_t)q * di + (int64_t)r * ei;
|
||||
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */
|
||||
md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
|
||||
me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
|
||||
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
|
||||
cd += (int64_t)modinfo->modulus.v[0] * md;
|
||||
ce += (int64_t)modinfo->modulus.v[0] * me;
|
||||
/* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */
|
||||
VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
|
||||
VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
|
||||
/* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output
|
||||
* limb i-1 (shifting down by 30 bits). */
|
||||
for (i = 1; i < 9; ++i) {
|
||||
di = d->v[i];
|
||||
ei = e->v[i];
|
||||
cd += (int64_t)u * di + (int64_t)v * ei;
|
||||
ce += (int64_t)q * di + (int64_t)r * ei;
|
||||
cd += (int64_t)modinfo->modulus.v[i] * md;
|
||||
ce += (int64_t)modinfo->modulus.v[i] * me;
|
||||
d->v[i - 1] = (int32_t)cd & M30; cd >>= 30;
|
||||
e->v[i - 1] = (int32_t)ce & M30; ce >>= 30;
|
||||
}
|
||||
/* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */
|
||||
d->v[8] = (int32_t)cd;
|
||||
e->v[8] = (int32_t)ce;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
|
||||
*
|
||||
* This implements the update_fg function from the explanation.
|
||||
*/
|
||||
static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
|
||||
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
||||
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
|
||||
int32_t fi, gi;
|
||||
int64_t cf, cg;
|
||||
int i;
|
||||
/* Start computing t*[f,g]. */
|
||||
fi = f->v[0];
|
||||
gi = g->v[0];
|
||||
cf = (int64_t)u * fi + (int64_t)v * gi;
|
||||
cg = (int64_t)q * fi + (int64_t)r * gi;
|
||||
/* Verify that the bottom 30 bits of the result are zero, and then throw them away. */
|
||||
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
|
||||
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
|
||||
/* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting
|
||||
* down by 30 bits). */
|
||||
for (i = 1; i < 9; ++i) {
|
||||
fi = f->v[i];
|
||||
gi = g->v[i];
|
||||
cf += (int64_t)u * fi + (int64_t)v * gi;
|
||||
cg += (int64_t)q * fi + (int64_t)r * gi;
|
||||
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
|
||||
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
|
||||
}
|
||||
/* What remains is limb 9 of t*[f,g]; store it as output limb 8. */
|
||||
f->v[8] = (int32_t)cf;
|
||||
g->v[8] = (int32_t)cg;
|
||||
}
|
||||
|
||||
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
|
||||
*
|
||||
* Version that operates on a variable number of limbs in f and g.
|
||||
*
|
||||
* This implements the update_fg function from the explanation in modinv64_impl.h.
|
||||
*/
|
||||
static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
|
||||
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
||||
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
|
||||
int32_t fi, gi;
|
||||
int64_t cf, cg;
|
||||
int i;
|
||||
VERIFY_CHECK(len > 0);
|
||||
/* Start computing t*[f,g]. */
|
||||
fi = f->v[0];
|
||||
gi = g->v[0];
|
||||
cf = (int64_t)u * fi + (int64_t)v * gi;
|
||||
cg = (int64_t)q * fi + (int64_t)r * gi;
|
||||
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
|
||||
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
|
||||
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
|
||||
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
|
||||
* down by 30 bits). */
|
||||
for (i = 1; i < len; ++i) {
|
||||
fi = f->v[i];
|
||||
gi = g->v[i];
|
||||
cf += (int64_t)u * fi + (int64_t)v * gi;
|
||||
cg += (int64_t)q * fi + (int64_t)r * gi;
|
||||
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
|
||||
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
|
||||
}
|
||||
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
|
||||
f->v[len - 1] = (int32_t)cf;
|
||||
g->v[len - 1] = (int32_t)cg;
|
||||
}
|
||||
|
||||
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
|
||||
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
|
||||
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
||||
secp256k1_modinv32_signed30 d = {{0}};
|
||||
secp256k1_modinv32_signed30 e = {{1}};
|
||||
secp256k1_modinv32_signed30 f = modinfo->modulus;
|
||||
secp256k1_modinv32_signed30 g = *x;
|
||||
int i;
|
||||
int32_t eta = -1;
|
||||
|
||||
/* Do 25 iterations of 30 divsteps each = 750 divsteps. 724 suffices for 256-bit inputs. */
|
||||
for (i = 0; i < 25; ++i) {
|
||||
/* Compute transition matrix and new eta after 30 divsteps. */
|
||||
secp256k1_modinv32_trans2x2 t;
|
||||
eta = secp256k1_modinv32_divsteps_30(eta, f.v[0], g.v[0], &t);
|
||||
/* Update d,e using that transition matrix. */
|
||||
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
|
||||
/* Update f,g using that transition matrix. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
secp256k1_modinv32_update_fg_30(&f, &g, &t);
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* At this point sufficient iterations have been performed that g must have reached 0
|
||||
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
|
||||
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
|
||||
#ifdef VERIFY
|
||||
/* g == 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0);
|
||||
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
|
||||
secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
|
||||
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
||||
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
||||
(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0 ||
|
||||
secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) == 0)));
|
||||
#endif
|
||||
|
||||
/* Optionally negate d, normalize to [0,modulus), and return it. */
|
||||
secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo);
|
||||
*x = d;
|
||||
}
|
||||
|
||||
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
|
||||
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
|
||||
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
||||
secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}};
|
||||
secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}};
|
||||
secp256k1_modinv32_signed30 f = modinfo->modulus;
|
||||
secp256k1_modinv32_signed30 g = *x;
|
||||
#ifdef VERIFY
|
||||
int i = 0;
|
||||
#endif
|
||||
int j, len = 9;
|
||||
int32_t eta = -1;
|
||||
int32_t cond, fn, gn;
|
||||
|
||||
/* Do iterations of 30 divsteps each until g=0. */
|
||||
while (1) {
|
||||
/* Compute transition matrix and new eta after 30 divsteps. */
|
||||
secp256k1_modinv32_trans2x2 t;
|
||||
eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t);
|
||||
/* Update d,e using that transition matrix. */
|
||||
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
|
||||
/* Update f,g using that transition matrix. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
|
||||
/* If the bottom limb of g is 0, there is a chance g=0. */
|
||||
if (g.v[0] == 0) {
|
||||
cond = 0;
|
||||
/* Check if all other limbs are also 0. */
|
||||
for (j = 1; j < len; ++j) {
|
||||
cond |= g.v[j];
|
||||
}
|
||||
/* If so, we're done. */
|
||||
if (cond == 0) break;
|
||||
}
|
||||
|
||||
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
|
||||
fn = f.v[len - 1];
|
||||
gn = g.v[len - 1];
|
||||
cond = ((int32_t)len - 2) >> 31;
|
||||
cond |= fn ^ (fn >> 31);
|
||||
cond |= gn ^ (gn >> 31);
|
||||
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
|
||||
if (cond == 0) {
|
||||
f.v[len - 2] |= (uint32_t)fn << 30;
|
||||
g.v[len - 2] |= (uint32_t)gn << 30;
|
||||
--len;
|
||||
}
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
|
||||
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
|
||||
#ifdef VERIFY
|
||||
/* g == 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0);
|
||||
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
|
||||
secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
|
||||
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
||||
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
||||
(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0 ||
|
||||
secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) == 0)));
|
||||
#endif
|
||||
|
||||
/* Optionally negate d, normalize to [0,modulus), and return it. */
|
||||
secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo);
|
||||
*x = d;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_MODINV32_IMPL_H */
|
|
@ -0,0 +1,46 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2020 Peter Dettman *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODINV64_H
|
||||
#define SECP256K1_MODINV64_H
|
||||
|
||||
#if defined HAVE_CONFIG_H
|
||||
#include "libsecp256k1-config.h"
|
||||
#endif
|
||||
|
||||
#include "util.h"
|
||||
|
||||
#ifndef SECP256K1_WIDEMUL_INT128
|
||||
#error "modinv64 requires 128-bit wide multiplication support"
|
||||
#endif
|
||||
|
||||
/* A signed 62-bit limb representation of integers.
|
||||
*
|
||||
* Its value is sum(v[i] * 2^(62*i), i=0..4). */
|
||||
typedef struct {
|
||||
int64_t v[5];
|
||||
} secp256k1_modinv64_signed62;
|
||||
|
||||
typedef struct {
|
||||
/* The modulus in signed62 notation, must be odd and in [3, 2^256]. */
|
||||
secp256k1_modinv64_signed62 modulus;
|
||||
|
||||
/* modulus^{-1} mod 2^62 */
|
||||
uint64_t modulus_inv62;
|
||||
} secp256k1_modinv64_modinfo;
|
||||
|
||||
/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
|
||||
* If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
|
||||
* x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
|
||||
*
|
||||
* On output, all of x's limbs will be in [0, 2^62).
|
||||
*/
|
||||
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
|
||||
|
||||
/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */
|
||||
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
|
||||
|
||||
#endif /* SECP256K1_MODINV64_H */
|
|
@ -0,0 +1,589 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2020 Peter Dettman *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODINV64_IMPL_H
|
||||
#define SECP256K1_MODINV64_IMPL_H
|
||||
|
||||
#include "modinv64.h"
|
||||
|
||||
#include "util.h"
|
||||
|
||||
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
|
||||
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
|
||||
*
|
||||
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
|
||||
* implementation for N=62, using 62-bit signed limbs represented as int64_t.
|
||||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Helper function to compute the absolute value of an int64_t.
|
||||
* (we don't use abs/labs/llabs as it depends on the int sizes). */
|
||||
static int64_t secp256k1_modinv64_abs(int64_t v) {
|
||||
VERIFY_CHECK(v > INT64_MIN);
|
||||
if (v < 0) return -v;
|
||||
return v;
|
||||
}
|
||||
|
||||
static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
|
||||
|
||||
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
|
||||
static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) {
|
||||
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
||||
int128_t c = 0;
|
||||
int i;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
if (i < alen) c += (int128_t)a->v[i] * factor;
|
||||
r->v[i] = (int64_t)c & M62; c >>= 62;
|
||||
}
|
||||
if (4 < alen) c += (int128_t)a->v[4] * factor;
|
||||
VERIFY_CHECK(c == (int64_t)c);
|
||||
r->v[4] = (int64_t)c;
|
||||
}
|
||||
|
||||
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
|
||||
static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) {
|
||||
int i;
|
||||
secp256k1_modinv64_signed62 am, bm;
|
||||
secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
|
||||
secp256k1_modinv64_mul_62(&bm, b, 5, factor);
|
||||
for (i = 0; i < 4; ++i) {
|
||||
/* Verify that all but the top limb of a and b are normalized. */
|
||||
VERIFY_CHECK(am.v[i] >> 62 == 0);
|
||||
VERIFY_CHECK(bm.v[i] >> 62 == 0);
|
||||
}
|
||||
for (i = 4; i >= 0; --i) {
|
||||
if (am.v[i] < bm.v[i]) return -1;
|
||||
if (am.v[i] > bm.v[i]) return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
|
||||
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
|
||||
* process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
|
||||
* [0,2^62). */
|
||||
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
|
||||
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
||||
int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
|
||||
int64_t cond_add, cond_negate;
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Verify that all limbs are in range (-2^62,2^62). */
|
||||
int i;
|
||||
for (i = 0; i < 5; ++i) {
|
||||
VERIFY_CHECK(r->v[i] >= -M62);
|
||||
VERIFY_CHECK(r->v[i] <= M62);
|
||||
}
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
|
||||
#endif
|
||||
|
||||
/* In a first step, add the modulus if the input is negative, and then negate if requested.
|
||||
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
|
||||
* limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
|
||||
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
|
||||
* indeed the behavior of the right shift operator). */
|
||||
cond_add = r4 >> 63;
|
||||
r0 += modinfo->modulus.v[0] & cond_add;
|
||||
r1 += modinfo->modulus.v[1] & cond_add;
|
||||
r2 += modinfo->modulus.v[2] & cond_add;
|
||||
r3 += modinfo->modulus.v[3] & cond_add;
|
||||
r4 += modinfo->modulus.v[4] & cond_add;
|
||||
cond_negate = sign >> 63;
|
||||
r0 = (r0 ^ cond_negate) - cond_negate;
|
||||
r1 = (r1 ^ cond_negate) - cond_negate;
|
||||
r2 = (r2 ^ cond_negate) - cond_negate;
|
||||
r3 = (r3 ^ cond_negate) - cond_negate;
|
||||
r4 = (r4 ^ cond_negate) - cond_negate;
|
||||
/* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
|
||||
r1 += r0 >> 62; r0 &= M62;
|
||||
r2 += r1 >> 62; r1 &= M62;
|
||||
r3 += r2 >> 62; r2 &= M62;
|
||||
r4 += r3 >> 62; r3 &= M62;
|
||||
|
||||
/* In a second step add the modulus again if the result is still negative, bringing
|
||||
* r to range [0,modulus). */
|
||||
cond_add = r4 >> 63;
|
||||
r0 += modinfo->modulus.v[0] & cond_add;
|
||||
r1 += modinfo->modulus.v[1] & cond_add;
|
||||
r2 += modinfo->modulus.v[2] & cond_add;
|
||||
r3 += modinfo->modulus.v[3] & cond_add;
|
||||
r4 += modinfo->modulus.v[4] & cond_add;
|
||||
/* And propagate again. */
|
||||
r1 += r0 >> 62; r0 &= M62;
|
||||
r2 += r1 >> 62; r1 &= M62;
|
||||
r3 += r2 >> 62; r2 &= M62;
|
||||
r4 += r3 >> 62; r3 &= M62;
|
||||
|
||||
r->v[0] = r0;
|
||||
r->v[1] = r1;
|
||||
r->v[2] = r2;
|
||||
r->v[3] = r3;
|
||||
r->v[4] = r4;
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(r0 >> 62 == 0);
|
||||
VERIFY_CHECK(r1 >> 62 == 0);
|
||||
VERIFY_CHECK(r2 >> 62 == 0);
|
||||
VERIFY_CHECK(r3 >> 62 == 0);
|
||||
VERIFY_CHECK(r4 >> 62 == 0);
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Data type for transition matrices (see section 3 of explanation).
|
||||
*
|
||||
* t = [ u v ]
|
||||
* [ q r ]
|
||||
*/
|
||||
typedef struct {
|
||||
int64_t u, v, q, r;
|
||||
} secp256k1_modinv64_trans2x2;
|
||||
|
||||
/* Compute the transition matrix and eta for 62 divsteps.
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
*
|
||||
* Implements the divsteps_n_matrix function from the explanation.
|
||||
*/
|
||||
static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
|
||||
/* u,v,q,r are the elements of the transformation matrix being built up,
|
||||
* starting with the identity matrix. Semantically they are signed integers
|
||||
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
|
||||
* permits left shifting (which is UB for negative numbers). The range
|
||||
* being inside [-2^63,2^63) means that casting to signed works correctly.
|
||||
*/
|
||||
uint64_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint64_t c1, c2, f = f0, g = g0, x, y, z;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 62; ++i) {
|
||||
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||
/* Compute conditional masks for (eta < 0) and for (g & 1). */
|
||||
c1 = eta >> 63;
|
||||
c2 = -(g & 1);
|
||||
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
||||
x = (f ^ c1) - c1;
|
||||
y = (u ^ c1) - c1;
|
||||
z = (v ^ c1) - c1;
|
||||
/* Conditionally add x,y,z to g,q,r. */
|
||||
g += x & c2;
|
||||
q += y & c2;
|
||||
r += z & c2;
|
||||
/* In what follows, c1 is a condition mask for (eta < 0) and (g & 1). */
|
||||
c1 &= c2;
|
||||
/* Conditionally negate eta, and unconditionally subtract 1. */
|
||||
eta = (eta ^ c1) - (c1 + 1);
|
||||
/* Conditionally add g,q,r to f,u,v. */
|
||||
f += g & c1;
|
||||
u += q & c1;
|
||||
v += r & c1;
|
||||
/* Shifts */
|
||||
g >>= 1;
|
||||
u <<= 1;
|
||||
v <<= 1;
|
||||
/* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
|
||||
VERIFY_CHECK(eta >= -745 && eta <= 745);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int64_t)u;
|
||||
t->v = (int64_t)v;
|
||||
t->q = (int64_t)q;
|
||||
t->r = (int64_t)r;
|
||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 62 of them will have determinant 2^62. */
|
||||
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 62 divsteps (variable time).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
*
|
||||
* Implements the divsteps_n_matrix_var function from the explanation.
|
||||
*/
|
||||
static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
|
||||
/* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
|
||||
uint64_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint64_t f = f0, g = g0, m;
|
||||
uint32_t w;
|
||||
int i = 62, limit, zeros;
|
||||
|
||||
for (;;) {
|
||||
/* Use a sentinel bit to count zeros only up to i. */
|
||||
zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
|
||||
/* Perform zeros divsteps at once; they all just divide g by two. */
|
||||
g >>= zeros;
|
||||
u <<= zeros;
|
||||
v <<= zeros;
|
||||
eta -= zeros;
|
||||
i -= zeros;
|
||||
/* We're done once we've done 62 divsteps. */
|
||||
if (i == 0) break;
|
||||
VERIFY_CHECK((f & 1) == 1);
|
||||
VERIFY_CHECK((g & 1) == 1);
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
|
||||
/* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
|
||||
VERIFY_CHECK(eta >= -745 && eta <= 745);
|
||||
/* If eta is negative, negate it and replace f,g with g,-f. */
|
||||
if (eta < 0) {
|
||||
uint64_t tmp;
|
||||
eta = -eta;
|
||||
tmp = f; f = g; g = -tmp;
|
||||
tmp = u; u = q; q = -tmp;
|
||||
tmp = v; v = r; r = -tmp;
|
||||
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
|
||||
* out (as we'd be done before that point), and no more than eta+1 can be done as its
|
||||
* will flip again once that happens. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
VERIFY_CHECK(limit > 0 && limit <= 62);
|
||||
/* m is a mask for the bottom min(limit, 6) bits. */
|
||||
m = (UINT64_MAX >> (64 - limit)) & 63U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
|
||||
* bits. */
|
||||
w = (f * g * (f * f - 2)) & m;
|
||||
} else {
|
||||
/* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
|
||||
* eta tends to be smaller here. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
VERIFY_CHECK(limit > 0 && limit <= 62);
|
||||
/* m is a mask for the bottom min(limit, 4) bits. */
|
||||
m = (UINT64_MAX >> (64 - limit)) & 15U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
|
||||
* bits. */
|
||||
w = f + (((f + 1) & 4) << 1);
|
||||
w = (-w * g) & m;
|
||||
}
|
||||
g += f * w;
|
||||
q += u * w;
|
||||
r += v * w;
|
||||
VERIFY_CHECK((g & m) == 0);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int64_t)u;
|
||||
t->v = (int64_t)v;
|
||||
t->q = (int64_t)q;
|
||||
t->r = (int64_t)r;
|
||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 62 of them will have determinant 2^62. */
|
||||
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix for 62 divsteps.
|
||||
*
|
||||
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
||||
* (-2^62,2^62).
|
||||
*
|
||||
* This implements the update_de function from the explanation.
|
||||
*/
|
||||
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) {
|
||||
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
||||
const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
|
||||
const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
|
||||
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
|
||||
int64_t md, me, sd, se;
|
||||
int128_t cd, ce;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
|
||||
VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) >= 0); /* |u|+|v| doesn't overflow */
|
||||
VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) >= 0); /* |q|+|r| doesn't overflow */
|
||||
VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) <= M62 + 1); /* |u|+|v| <= 2^62 */
|
||||
VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) <= M62 + 1); /* |q|+|r| <= 2^62 */
|
||||
#endif
|
||||
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
|
||||
sd = d4 >> 63;
|
||||
se = e4 >> 63;
|
||||
md = (u & sd) + (v & se);
|
||||
me = (q & sd) + (r & se);
|
||||
/* Begin computing t*[d,e]. */
|
||||
cd = (int128_t)u * d0 + (int128_t)v * e0;
|
||||
ce = (int128_t)q * d0 + (int128_t)r * e0;
|
||||
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
|
||||
md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62;
|
||||
me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62;
|
||||
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
|
||||
cd += (int128_t)modinfo->modulus.v[0] * md;
|
||||
ce += (int128_t)modinfo->modulus.v[0] * me;
|
||||
/* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
|
||||
VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62;
|
||||
VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62;
|
||||
/* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
|
||||
cd += (int128_t)u * d1 + (int128_t)v * e1;
|
||||
ce += (int128_t)q * d1 + (int128_t)r * e1;
|
||||
if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
|
||||
cd += (int128_t)modinfo->modulus.v[1] * md;
|
||||
ce += (int128_t)modinfo->modulus.v[1] * me;
|
||||
}
|
||||
d->v[0] = (int64_t)cd & M62; cd >>= 62;
|
||||
e->v[0] = (int64_t)ce & M62; ce >>= 62;
|
||||
/* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
|
||||
cd += (int128_t)u * d2 + (int128_t)v * e2;
|
||||
ce += (int128_t)q * d2 + (int128_t)r * e2;
|
||||
if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
|
||||
cd += (int128_t)modinfo->modulus.v[2] * md;
|
||||
ce += (int128_t)modinfo->modulus.v[2] * me;
|
||||
}
|
||||
d->v[1] = (int64_t)cd & M62; cd >>= 62;
|
||||
e->v[1] = (int64_t)ce & M62; ce >>= 62;
|
||||
/* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
|
||||
cd += (int128_t)u * d3 + (int128_t)v * e3;
|
||||
ce += (int128_t)q * d3 + (int128_t)r * e3;
|
||||
if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
|
||||
cd += (int128_t)modinfo->modulus.v[3] * md;
|
||||
ce += (int128_t)modinfo->modulus.v[3] * me;
|
||||
}
|
||||
d->v[2] = (int64_t)cd & M62; cd >>= 62;
|
||||
e->v[2] = (int64_t)ce & M62; ce >>= 62;
|
||||
/* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
|
||||
cd += (int128_t)u * d4 + (int128_t)v * e4;
|
||||
ce += (int128_t)q * d4 + (int128_t)r * e4;
|
||||
cd += (int128_t)modinfo->modulus.v[4] * md;
|
||||
ce += (int128_t)modinfo->modulus.v[4] * me;
|
||||
d->v[3] = (int64_t)cd & M62; cd >>= 62;
|
||||
e->v[3] = (int64_t)ce & M62; ce >>= 62;
|
||||
/* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
|
||||
d->v[4] = (int64_t)cd;
|
||||
e->v[4] = (int64_t)ce;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
|
||||
*
|
||||
* This implements the update_fg function from the explanation.
|
||||
*/
|
||||
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
|
||||
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
||||
const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
|
||||
const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
|
||||
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
|
||||
int128_t cf, cg;
|
||||
/* Start computing t*[f,g]. */
|
||||
cf = (int128_t)u * f0 + (int128_t)v * g0;
|
||||
cg = (int128_t)q * f0 + (int128_t)r * g0;
|
||||
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
|
||||
VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
|
||||
VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
|
||||
/* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
|
||||
cf += (int128_t)u * f1 + (int128_t)v * g1;
|
||||
cg += (int128_t)q * f1 + (int128_t)r * g1;
|
||||
f->v[0] = (int64_t)cf & M62; cf >>= 62;
|
||||
g->v[0] = (int64_t)cg & M62; cg >>= 62;
|
||||
/* Compute limb 2 of t*[f,g], and store it as output limb 1. */
|
||||
cf += (int128_t)u * f2 + (int128_t)v * g2;
|
||||
cg += (int128_t)q * f2 + (int128_t)r * g2;
|
||||
f->v[1] = (int64_t)cf & M62; cf >>= 62;
|
||||
g->v[1] = (int64_t)cg & M62; cg >>= 62;
|
||||
/* Compute limb 3 of t*[f,g], and store it as output limb 2. */
|
||||
cf += (int128_t)u * f3 + (int128_t)v * g3;
|
||||
cg += (int128_t)q * f3 + (int128_t)r * g3;
|
||||
f->v[2] = (int64_t)cf & M62; cf >>= 62;
|
||||
g->v[2] = (int64_t)cg & M62; cg >>= 62;
|
||||
/* Compute limb 4 of t*[f,g], and store it as output limb 3. */
|
||||
cf += (int128_t)u * f4 + (int128_t)v * g4;
|
||||
cg += (int128_t)q * f4 + (int128_t)r * g4;
|
||||
f->v[3] = (int64_t)cf & M62; cf >>= 62;
|
||||
g->v[3] = (int64_t)cg & M62; cg >>= 62;
|
||||
/* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
|
||||
f->v[4] = (int64_t)cf;
|
||||
g->v[4] = (int64_t)cg;
|
||||
}
|
||||
|
||||
/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
|
||||
*
|
||||
* Version that operates on a variable number of limbs in f and g.
|
||||
*
|
||||
* This implements the update_fg function from the explanation.
|
||||
*/
|
||||
static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
|
||||
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
||||
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
|
||||
int64_t fi, gi;
|
||||
int128_t cf, cg;
|
||||
int i;
|
||||
VERIFY_CHECK(len > 0);
|
||||
/* Start computing t*[f,g]. */
|
||||
fi = f->v[0];
|
||||
gi = g->v[0];
|
||||
cf = (int128_t)u * fi + (int128_t)v * gi;
|
||||
cg = (int128_t)q * fi + (int128_t)r * gi;
|
||||
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
|
||||
VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
|
||||
VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
|
||||
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
|
||||
* down by 62 bits). */
|
||||
for (i = 1; i < len; ++i) {
|
||||
fi = f->v[i];
|
||||
gi = g->v[i];
|
||||
cf += (int128_t)u * fi + (int128_t)v * gi;
|
||||
cg += (int128_t)q * fi + (int128_t)r * gi;
|
||||
f->v[i - 1] = (int64_t)cf & M62; cf >>= 62;
|
||||
g->v[i - 1] = (int64_t)cg & M62; cg >>= 62;
|
||||
}
|
||||
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
|
||||
f->v[len - 1] = (int64_t)cf;
|
||||
g->v[len - 1] = (int64_t)cg;
|
||||
}
|
||||
|
||||
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
|
||||
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
|
||||
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
||||
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
|
||||
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
|
||||
secp256k1_modinv64_signed62 f = modinfo->modulus;
|
||||
secp256k1_modinv64_signed62 g = *x;
|
||||
int i;
|
||||
int64_t eta = -1;
|
||||
|
||||
/* Do 12 iterations of 62 divsteps each = 744 divsteps. 724 suffices for 256-bit inputs. */
|
||||
for (i = 0; i < 12; ++i) {
|
||||
/* Compute transition matrix and new eta after 62 divsteps. */
|
||||
secp256k1_modinv64_trans2x2 t;
|
||||
eta = secp256k1_modinv64_divsteps_62(eta, f.v[0], g.v[0], &t);
|
||||
/* Update d,e using that transition matrix. */
|
||||
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
|
||||
/* Update f,g using that transition matrix. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
secp256k1_modinv64_update_fg_62(&f, &g, &t);
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* At this point sufficient iterations have been performed that g must have reached 0
|
||||
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
|
||||
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
|
||||
#ifdef VERIFY
|
||||
/* g == 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
|
||||
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
|
||||
secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
|
||||
(secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
|
||||
secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
|
||||
(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
|
||||
secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
|
||||
#endif
|
||||
|
||||
/* Optionally negate d, normalize to [0,modulus), and return it. */
|
||||
secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
|
||||
*x = d;
|
||||
}
|
||||
|
||||
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
|
||||
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
|
||||
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
||||
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
|
||||
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
|
||||
secp256k1_modinv64_signed62 f = modinfo->modulus;
|
||||
secp256k1_modinv64_signed62 g = *x;
|
||||
#ifdef VERIFY
|
||||
int i = 0;
|
||||
#endif
|
||||
int j, len = 5;
|
||||
int64_t eta = -1;
|
||||
int64_t cond, fn, gn;
|
||||
|
||||
/* Do iterations of 62 divsteps each until g=0. */
|
||||
while (1) {
|
||||
/* Compute transition matrix and new eta after 62 divsteps. */
|
||||
secp256k1_modinv64_trans2x2 t;
|
||||
eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
|
||||
/* Update d,e using that transition matrix. */
|
||||
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
|
||||
/* Update f,g using that transition matrix. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
|
||||
/* If the bottom limb of g is zero, there is a chance that g=0. */
|
||||
if (g.v[0] == 0) {
|
||||
cond = 0;
|
||||
/* Check if the other limbs are also 0. */
|
||||
for (j = 1; j < len; ++j) {
|
||||
cond |= g.v[j];
|
||||
}
|
||||
/* If so, we're done. */
|
||||
if (cond == 0) break;
|
||||
}
|
||||
|
||||
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
|
||||
fn = f.v[len - 1];
|
||||
gn = g.v[len - 1];
|
||||
cond = ((int64_t)len - 2) >> 63;
|
||||
cond |= fn ^ (fn >> 63);
|
||||
cond |= gn ^ (gn >> 63);
|
||||
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
|
||||
if (cond == 0) {
|
||||
f.v[len - 2] |= (uint64_t)fn << 62;
|
||||
g.v[len - 2] |= (uint64_t)gn << 62;
|
||||
--len;
|
||||
}
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
|
||||
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
|
||||
#ifdef VERIFY
|
||||
/* g == 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
|
||||
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
|
||||
secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
|
||||
(secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
|
||||
secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
|
||||
(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
|
||||
secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
|
||||
#endif
|
||||
|
||||
/* Optionally negate d, normalize to [0,modulus), and return it. */
|
||||
secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
|
||||
*x = d;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_MODINV64_IMPL_H */
|
74
src/num.h
74
src/num.h
|
@ -1,74 +0,0 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2013, 2014 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_NUM_H
|
||||
#define SECP256K1_NUM_H
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
|
||||
#if defined HAVE_CONFIG_H
|
||||
#include "libsecp256k1-config.h"
|
||||
#endif
|
||||
|
||||
#if defined(USE_NUM_GMP)
|
||||
#include "num_gmp.h"
|
||||
#else
|
||||
#error "Please select num implementation"
|
||||
#endif
|
||||
|
||||
/** Copy a number. */
|
||||
static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a);
|
||||
|
||||
/** Convert a number's absolute value to a binary big-endian string.
|
||||
* There must be enough place. */
|
||||
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a);
|
||||
|
||||
/** Set a number to the value of a binary big-endian string. */
|
||||
static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen);
|
||||
|
||||
/** Compute a modular inverse. The input must be less than the modulus. */
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
|
||||
|
||||
/** Compute the jacobi symbol (a|b). b must be positive and odd. */
|
||||
static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Compare the absolute value of two numbers. */
|
||||
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Test whether two number are equal (including sign). */
|
||||
static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Add two (signed) numbers. */
|
||||
static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Subtract two (signed) numbers. */
|
||||
static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Multiply two (signed) numbers. */
|
||||
static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1,
|
||||
even if r was negative. */
|
||||
static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m);
|
||||
|
||||
/** Right-shift the passed number by bits bits. */
|
||||
static void secp256k1_num_shift(secp256k1_num *r, int bits);
|
||||
|
||||
/** Check whether a number is zero. */
|
||||
static int secp256k1_num_is_zero(const secp256k1_num *a);
|
||||
|
||||
/** Check whether a number is one. */
|
||||
static int secp256k1_num_is_one(const secp256k1_num *a);
|
||||
|
||||
/** Check whether a number is strictly negative. */
|
||||
static int secp256k1_num_is_neg(const secp256k1_num *a);
|
||||
|
||||
/** Change a number's sign. */
|
||||
static void secp256k1_num_negate(secp256k1_num *r);
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* SECP256K1_NUM_H */
|
|
@ -1,20 +0,0 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2013, 2014 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_NUM_REPR_H
|
||||
#define SECP256K1_NUM_REPR_H
|
||||
|
||||
#include <gmp.h>
|
||||
|
||||
#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS)
|
||||
|
||||
typedef struct {
|
||||
mp_limb_t data[2*NUM_LIMBS];
|
||||
int neg;
|
||||
int limbs;
|
||||
} secp256k1_num;
|
||||
|
||||
#endif /* SECP256K1_NUM_REPR_H */
|
|
@ -1,288 +0,0 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2013, 2014 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_NUM_REPR_IMPL_H
|
||||
#define SECP256K1_NUM_REPR_IMPL_H
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <gmp.h>
|
||||
|
||||
#include "util.h"
|
||||
#include "num.h"
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_num_sanity(const secp256k1_num *a) {
|
||||
VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0));
|
||||
}
|
||||
#else
|
||||
#define secp256k1_num_sanity(a) do { } while(0)
|
||||
#endif
|
||||
|
||||
static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) {
|
||||
*r = *a;
|
||||
}
|
||||
|
||||
static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) {
|
||||
unsigned char tmp[65];
|
||||
int len = 0;
|
||||
int shift = 0;
|
||||
if (a->limbs>1 || a->data[0] != 0) {
|
||||
len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs);
|
||||
}
|
||||
while (shift < len && tmp[shift] == 0) shift++;
|
||||
VERIFY_CHECK(len-shift <= (int)rlen);
|
||||
memset(r, 0, rlen - len + shift);
|
||||
if (len > shift) {
|
||||
memcpy(r + rlen - len + shift, tmp + shift, len - shift);
|
||||
}
|
||||
memset(tmp, 0, sizeof(tmp));
|
||||
}
|
||||
|
||||
static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) {
|
||||
int len;
|
||||
VERIFY_CHECK(alen > 0);
|
||||
VERIFY_CHECK(alen <= 64);
|
||||
len = mpn_set_str(r->data, a, alen, 256);
|
||||
if (len == 0) {
|
||||
r->data[0] = 0;
|
||||
len = 1;
|
||||
}
|
||||
VERIFY_CHECK(len <= NUM_LIMBS*2);
|
||||
r->limbs = len;
|
||||
r->neg = 0;
|
||||
while (r->limbs > 1 && r->data[r->limbs-1]==0) {
|
||||
r->limbs--;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs);
|
||||
r->limbs = a->limbs;
|
||||
if (c != 0) {
|
||||
VERIFY_CHECK(r->limbs < 2*NUM_LIMBS);
|
||||
r->data[r->limbs++] = c;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs);
|
||||
(void)c;
|
||||
VERIFY_CHECK(c == 0);
|
||||
r->limbs = a->limbs;
|
||||
while (r->limbs > 1 && r->data[r->limbs-1]==0) {
|
||||
r->limbs--;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) {
|
||||
secp256k1_num_sanity(r);
|
||||
secp256k1_num_sanity(m);
|
||||
|
||||
if (r->limbs >= m->limbs) {
|
||||
mp_limb_t t[2*NUM_LIMBS];
|
||||
mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs);
|
||||
memset(t, 0, sizeof(t));
|
||||
r->limbs = m->limbs;
|
||||
while (r->limbs > 1 && r->data[r->limbs-1]==0) {
|
||||
r->limbs--;
|
||||
}
|
||||
}
|
||||
|
||||
if (r->neg && (r->limbs > 1 || r->data[0] != 0)) {
|
||||
secp256k1_num_sub_abs(r, m, r);
|
||||
r->neg = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) {
|
||||
int i;
|
||||
mp_limb_t g[NUM_LIMBS+1];
|
||||
mp_limb_t u[NUM_LIMBS+1];
|
||||
mp_limb_t v[NUM_LIMBS+1];
|
||||
mp_size_t sn;
|
||||
mp_size_t gn;
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(m);
|
||||
|
||||
/** mpn_gcdext computes: (G,S) = gcdext(U,V), where
|
||||
* * G = gcd(U,V)
|
||||
* * G = U*S + V*T
|
||||
* * U has equal or more limbs than V, and V has no padding
|
||||
* If we set U to be (a padded version of) a, and V = m:
|
||||
* G = a*S + m*T
|
||||
* G = a*S mod m
|
||||
* Assuming G=1:
|
||||
* S = 1/a mod m
|
||||
*/
|
||||
VERIFY_CHECK(m->limbs <= NUM_LIMBS);
|
||||
VERIFY_CHECK(m->data[m->limbs-1] != 0);
|
||||
for (i = 0; i < m->limbs; i++) {
|
||||
u[i] = (i < a->limbs) ? a->data[i] : 0;
|
||||
v[i] = m->data[i];
|
||||
}
|
||||
sn = NUM_LIMBS+1;
|
||||
gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs);
|
||||
(void)gn;
|
||||
VERIFY_CHECK(gn == 1);
|
||||
VERIFY_CHECK(g[0] == 1);
|
||||
r->neg = a->neg ^ m->neg;
|
||||
if (sn < 0) {
|
||||
mpn_sub(r->data, m->data, m->limbs, r->data, -sn);
|
||||
r->limbs = m->limbs;
|
||||
while (r->limbs > 1 && r->data[r->limbs-1]==0) {
|
||||
r->limbs--;
|
||||
}
|
||||
} else {
|
||||
r->limbs = sn;
|
||||
}
|
||||
memset(g, 0, sizeof(g));
|
||||
memset(u, 0, sizeof(u));
|
||||
memset(v, 0, sizeof(v));
|
||||
}
|
||||
|
||||
static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b) {
|
||||
int ret;
|
||||
mpz_t ga, gb;
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
VERIFY_CHECK(!b->neg && (b->limbs > 0) && (b->data[0] & 1));
|
||||
|
||||
mpz_inits(ga, gb, NULL);
|
||||
|
||||
mpz_import(gb, b->limbs, -1, sizeof(mp_limb_t), 0, 0, b->data);
|
||||
mpz_import(ga, a->limbs, -1, sizeof(mp_limb_t), 0, 0, a->data);
|
||||
if (a->neg) {
|
||||
mpz_neg(ga, ga);
|
||||
}
|
||||
|
||||
ret = mpz_jacobi(ga, gb);
|
||||
|
||||
mpz_clears(ga, gb, NULL);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_one(const secp256k1_num *a) {
|
||||
return (a->limbs == 1 && a->data[0] == 1);
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_zero(const secp256k1_num *a) {
|
||||
return (a->limbs == 1 && a->data[0] == 0);
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_neg(const secp256k1_num *a) {
|
||||
return (a->limbs > 1 || a->data[0] != 0) && a->neg;
|
||||
}
|
||||
|
||||
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) {
|
||||
if (a->limbs > b->limbs) {
|
||||
return 1;
|
||||
}
|
||||
if (a->limbs < b->limbs) {
|
||||
return -1;
|
||||
}
|
||||
return mpn_cmp(a->data, b->data, a->limbs);
|
||||
}
|
||||
|
||||
static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) {
|
||||
if (a->limbs > b->limbs) {
|
||||
return 0;
|
||||
}
|
||||
if (a->limbs < b->limbs) {
|
||||
return 0;
|
||||
}
|
||||
if ((a->neg && !secp256k1_num_is_zero(a)) != (b->neg && !secp256k1_num_is_zero(b))) {
|
||||
return 0;
|
||||
}
|
||||
return mpn_cmp(a->data, b->data, a->limbs) == 0;
|
||||
}
|
||||
|
||||
static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) {
|
||||
if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */
|
||||
r->neg = a->neg;
|
||||
if (a->limbs >= b->limbs) {
|
||||
secp256k1_num_add_abs(r, a, b);
|
||||
} else {
|
||||
secp256k1_num_add_abs(r, b, a);
|
||||
}
|
||||
} else {
|
||||
if (secp256k1_num_cmp(a, b) > 0) {
|
||||
r->neg = a->neg;
|
||||
secp256k1_num_sub_abs(r, a, b);
|
||||
} else {
|
||||
r->neg = b->neg ^ bneg;
|
||||
secp256k1_num_sub_abs(r, b, a);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
secp256k1_num_subadd(r, a, b, 0);
|
||||
}
|
||||
|
||||
static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
secp256k1_num_subadd(r, a, b, 1);
|
||||
}
|
||||
|
||||
static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
|
||||
mp_limb_t tmp[2*NUM_LIMBS+1];
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
|
||||
VERIFY_CHECK(a->limbs + b->limbs <= 2*NUM_LIMBS+1);
|
||||
if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) {
|
||||
r->limbs = 1;
|
||||
r->neg = 0;
|
||||
r->data[0] = 0;
|
||||
return;
|
||||
}
|
||||
if (a->limbs >= b->limbs) {
|
||||
mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs);
|
||||
} else {
|
||||
mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs);
|
||||
}
|
||||
r->limbs = a->limbs + b->limbs;
|
||||
if (r->limbs > 1 && tmp[r->limbs - 1]==0) {
|
||||
r->limbs--;
|
||||
}
|
||||
VERIFY_CHECK(r->limbs <= 2*NUM_LIMBS);
|
||||
mpn_copyi(r->data, tmp, r->limbs);
|
||||
r->neg = a->neg ^ b->neg;
|
||||
memset(tmp, 0, sizeof(tmp));
|
||||
}
|
||||
|
||||
static void secp256k1_num_shift(secp256k1_num *r, int bits) {
|
||||
if (bits % GMP_NUMB_BITS) {
|
||||
/* Shift within limbs. */
|
||||
mpn_rshift(r->data, r->data, r->limbs, bits % GMP_NUMB_BITS);
|
||||
}
|
||||
if (bits >= GMP_NUMB_BITS) {
|
||||
int i;
|
||||
/* Shift full limbs. */
|
||||
for (i = 0; i < r->limbs; i++) {
|
||||
int index = i + (bits / GMP_NUMB_BITS);
|
||||
if (index < r->limbs && index < 2*NUM_LIMBS) {
|
||||
r->data[i] = r->data[index];
|
||||
} else {
|
||||
r->data[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (r->limbs>1 && r->data[r->limbs-1]==0) {
|
||||
r->limbs--;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_num_negate(secp256k1_num *r) {
|
||||
r->neg ^= 1;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_NUM_REPR_IMPL_H */
|
|
@ -1,24 +0,0 @@
|
|||
/***********************************************************************
|
||||
* Copyright (c) 2013, 2014 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_NUM_IMPL_H
|
||||
#define SECP256K1_NUM_IMPL_H
|
||||
|
||||
#if defined HAVE_CONFIG_H
|
||||
#include "libsecp256k1-config.h"
|
||||
#endif
|
||||
|
||||
#include "num.h"
|
||||
|
||||
#if defined(USE_NUM_GMP)
|
||||
#include "num_gmp_impl.h"
|
||||
#elif defined(USE_NUM_NONE)
|
||||
/* Nothing. */
|
||||
#else
|
||||
#error "Please select num implementation"
|
||||
#endif
|
||||
|
||||
#endif /* SECP256K1_NUM_IMPL_H */
|
12
src/scalar.h
12
src/scalar.h
|
@ -7,7 +7,6 @@
|
|||
#ifndef SECP256K1_SCALAR_H
|
||||
#define SECP256K1_SCALAR_H
|
||||
|
||||
#include "num.h"
|
||||
#include "util.h"
|
||||
|
||||
#if defined HAVE_CONFIG_H
|
||||
|
@ -63,9 +62,6 @@ static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a,
|
|||
* the low bits that were shifted off */
|
||||
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
|
||||
|
||||
/** Compute the square of a scalar (modulo the group order). */
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Compute the inverse of a scalar (modulo the group order). */
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
|
||||
|
||||
|
@ -91,14 +87,6 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
|
|||
* Returns -1 if the number was negated, 1 otherwise */
|
||||
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
/** Convert a scalar to a number. */
|
||||
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
|
||||
|
||||
/** Get the order of the group as a number. */
|
||||
static void secp256k1_scalar_order_get_num(secp256k1_num *r);
|
||||
#endif
|
||||
|
||||
/** Compare two scalars. */
|
||||
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
|
||||
|
||||
|
|
|
@ -7,6 +7,8 @@
|
|||
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
|
||||
#define SECP256K1_SCALAR_REPR_IMPL_H
|
||||
|
||||
#include "modinv64_impl.h"
|
||||
|
||||
/* Limbs of the secp256k1 order. */
|
||||
#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
|
||||
#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
|
||||
|
@ -212,28 +214,6 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
|||
VERIFY_CHECK(c1 >= th); \
|
||||
}
|
||||
|
||||
/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
|
||||
#define muladd2(a,b) { \
|
||||
uint64_t tl, th, th2, tl2; \
|
||||
{ \
|
||||
uint128_t t = (uint128_t)a * b; \
|
||||
th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
|
||||
tl = t; \
|
||||
} \
|
||||
th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
|
||||
c2 += (th2 < th); /* never overflows by contract (verified the next line) */ \
|
||||
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
|
||||
tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
|
||||
th2 += (tl2 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
|
||||
c0 += tl2; /* overflow is handled on the next line */ \
|
||||
th2 += (c0 < tl2); /* second overflow is handled on the next line */ \
|
||||
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
|
||||
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
|
||||
c1 += th2; /* overflow is handled on the next line */ \
|
||||
c2 += (c1 < th2); /* never overflows by contract (verified the next line) */ \
|
||||
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
|
||||
}
|
||||
|
||||
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
|
||||
#define sumadd(a) { \
|
||||
unsigned int over; \
|
||||
|
@ -743,148 +723,10 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, c
|
|||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
|
||||
#ifdef USE_ASM_X86_64
|
||||
__asm__ __volatile__(
|
||||
/* Preload */
|
||||
"movq 0(%%rdi), %%r11\n"
|
||||
"movq 8(%%rdi), %%r12\n"
|
||||
"movq 16(%%rdi), %%r13\n"
|
||||
"movq 24(%%rdi), %%r14\n"
|
||||
/* (rax,rdx) = a0 * a0 */
|
||||
"movq %%r11, %%rax\n"
|
||||
"mulq %%r11\n"
|
||||
/* Extract l0 */
|
||||
"movq %%rax, 0(%%rsi)\n"
|
||||
/* (r8,r9,r10) = (rdx,0) */
|
||||
"movq %%rdx, %%r8\n"
|
||||
"xorq %%r9, %%r9\n"
|
||||
"xorq %%r10, %%r10\n"
|
||||
/* (r8,r9,r10) += 2 * a0 * a1 */
|
||||
"movq %%r11, %%rax\n"
|
||||
"mulq %%r12\n"
|
||||
"addq %%rax, %%r8\n"
|
||||
"adcq %%rdx, %%r9\n"
|
||||
"adcq $0, %%r10\n"
|
||||
"addq %%rax, %%r8\n"
|
||||
"adcq %%rdx, %%r9\n"
|
||||
"adcq $0, %%r10\n"
|
||||
/* Extract l1 */
|
||||
"movq %%r8, 8(%%rsi)\n"
|
||||
"xorq %%r8, %%r8\n"
|
||||
/* (r9,r10,r8) += 2 * a0 * a2 */
|
||||
"movq %%r11, %%rax\n"
|
||||
"mulq %%r13\n"
|
||||
"addq %%rax, %%r9\n"
|
||||
"adcq %%rdx, %%r10\n"
|
||||
"adcq $0, %%r8\n"
|
||||
"addq %%rax, %%r9\n"
|
||||
"adcq %%rdx, %%r10\n"
|
||||
"adcq $0, %%r8\n"
|
||||
/* (r9,r10,r8) += a1 * a1 */
|
||||
"movq %%r12, %%rax\n"
|
||||
"mulq %%r12\n"
|
||||
"addq %%rax, %%r9\n"
|
||||
"adcq %%rdx, %%r10\n"
|
||||
"adcq $0, %%r8\n"
|
||||
/* Extract l2 */
|
||||
"movq %%r9, 16(%%rsi)\n"
|
||||
"xorq %%r9, %%r9\n"
|
||||
/* (r10,r8,r9) += 2 * a0 * a3 */
|
||||
"movq %%r11, %%rax\n"
|
||||
"mulq %%r14\n"
|
||||
"addq %%rax, %%r10\n"
|
||||
"adcq %%rdx, %%r8\n"
|
||||
"adcq $0, %%r9\n"
|
||||
"addq %%rax, %%r10\n"
|
||||
"adcq %%rdx, %%r8\n"
|
||||
"adcq $0, %%r9\n"
|
||||
/* (r10,r8,r9) += 2 * a1 * a2 */
|
||||
"movq %%r12, %%rax\n"
|
||||
"mulq %%r13\n"
|
||||
"addq %%rax, %%r10\n"
|
||||
"adcq %%rdx, %%r8\n"
|
||||
"adcq $0, %%r9\n"
|
||||
"addq %%rax, %%r10\n"
|
||||
"adcq %%rdx, %%r8\n"
|
||||
"adcq $0, %%r9\n"
|
||||
/* Extract l3 */
|
||||
"movq %%r10, 24(%%rsi)\n"
|
||||
"xorq %%r10, %%r10\n"
|
||||
/* (r8,r9,r10) += 2 * a1 * a3 */
|
||||
"movq %%r12, %%rax\n"
|
||||
"mulq %%r14\n"
|
||||
"addq %%rax, %%r8\n"
|
||||
"adcq %%rdx, %%r9\n"
|
||||
"adcq $0, %%r10\n"
|
||||
"addq %%rax, %%r8\n"
|
||||
"adcq %%rdx, %%r9\n"
|
||||
"adcq $0, %%r10\n"
|
||||
/* (r8,r9,r10) += a2 * a2 */
|
||||
"movq %%r13, %%rax\n"
|
||||
"mulq %%r13\n"
|
||||
"addq %%rax, %%r8\n"
|
||||
"adcq %%rdx, %%r9\n"
|
||||
"adcq $0, %%r10\n"
|
||||
/* Extract l4 */
|
||||
"movq %%r8, 32(%%rsi)\n"
|
||||
"xorq %%r8, %%r8\n"
|
||||
/* (r9,r10,r8) += 2 * a2 * a3 */
|
||||
"movq %%r13, %%rax\n"
|
||||
"mulq %%r14\n"
|
||||
"addq %%rax, %%r9\n"
|
||||
"adcq %%rdx, %%r10\n"
|
||||
"adcq $0, %%r8\n"
|
||||
"addq %%rax, %%r9\n"
|
||||
"adcq %%rdx, %%r10\n"
|
||||
"adcq $0, %%r8\n"
|
||||
/* Extract l5 */
|
||||
"movq %%r9, 40(%%rsi)\n"
|
||||
/* (r10,r8) += a3 * a3 */
|
||||
"movq %%r14, %%rax\n"
|
||||
"mulq %%r14\n"
|
||||
"addq %%rax, %%r10\n"
|
||||
"adcq %%rdx, %%r8\n"
|
||||
/* Extract l6 */
|
||||
"movq %%r10, 48(%%rsi)\n"
|
||||
/* Extract l7 */
|
||||
"movq %%r8, 56(%%rsi)\n"
|
||||
:
|
||||
: "S"(l), "D"(a->d)
|
||||
: "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory");
|
||||
#else
|
||||
/* 160 bit accumulator. */
|
||||
uint64_t c0 = 0, c1 = 0;
|
||||
uint32_t c2 = 0;
|
||||
|
||||
/* l[0..7] = a[0..3] * b[0..3]. */
|
||||
muladd_fast(a->d[0], a->d[0]);
|
||||
extract_fast(l[0]);
|
||||
muladd2(a->d[0], a->d[1]);
|
||||
extract(l[1]);
|
||||
muladd2(a->d[0], a->d[2]);
|
||||
muladd(a->d[1], a->d[1]);
|
||||
extract(l[2]);
|
||||
muladd2(a->d[0], a->d[3]);
|
||||
muladd2(a->d[1], a->d[2]);
|
||||
extract(l[3]);
|
||||
muladd2(a->d[1], a->d[3]);
|
||||
muladd(a->d[2], a->d[2]);
|
||||
extract(l[4]);
|
||||
muladd2(a->d[2], a->d[3]);
|
||||
extract(l[5]);
|
||||
muladd_fast(a->d[3], a->d[3]);
|
||||
extract_fast(l[6]);
|
||||
VERIFY_CHECK(c1 == 0);
|
||||
l[7] = c0;
|
||||
#endif
|
||||
}
|
||||
|
||||
#undef sumadd
|
||||
#undef sumadd_fast
|
||||
#undef muladd
|
||||
#undef muladd_fast
|
||||
#undef muladd2
|
||||
#undef extract
|
||||
#undef extract_fast
|
||||
|
||||
|
@ -906,12 +748,6 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
uint64_t l[8];
|
||||
secp256k1_scalar_sqr_512(l, a);
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
r1->d[0] = k->d[0];
|
||||
r1->d[1] = k->d[1];
|
||||
|
@ -955,4 +791,78 @@ static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const se
|
|||
r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a) {
|
||||
const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
|
||||
|
||||
/* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
|
||||
* have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
|
||||
*/
|
||||
VERIFY_CHECK(a0 >> 62 == 0);
|
||||
VERIFY_CHECK(a1 >> 62 == 0);
|
||||
VERIFY_CHECK(a2 >> 62 == 0);
|
||||
VERIFY_CHECK(a3 >> 62 == 0);
|
||||
VERIFY_CHECK(a4 >> 8 == 0);
|
||||
|
||||
r->d[0] = a0 | a1 << 62;
|
||||
r->d[1] = a1 >> 2 | a2 << 60;
|
||||
r->d[2] = a2 >> 4 | a3 << 58;
|
||||
r->d[3] = a3 >> 6 | a4 << 56;
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a) {
|
||||
const uint64_t M62 = UINT64_MAX >> 2;
|
||||
const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3];
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0);
|
||||
#endif
|
||||
|
||||
r->v[0] = a0 & M62;
|
||||
r->v[1] = (a0 >> 62 | a1 << 2) & M62;
|
||||
r->v[2] = (a1 >> 60 | a2 << 4) & M62;
|
||||
r->v[3] = (a2 >> 58 | a3 << 6) & M62;
|
||||
r->v[4] = a3 >> 56;
|
||||
}
|
||||
|
||||
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar = {
|
||||
{{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
|
||||
0x34F20099AA774EC1LL
|
||||
};
|
||||
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
secp256k1_modinv64_signed62 s;
|
||||
#ifdef VERIFY
|
||||
int zero_in = secp256k1_scalar_is_zero(x);
|
||||
#endif
|
||||
secp256k1_scalar_to_signed62(&s, x);
|
||||
secp256k1_modinv64(&s, &secp256k1_const_modinfo_scalar);
|
||||
secp256k1_scalar_from_signed62(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
secp256k1_modinv64_signed62 s;
|
||||
#ifdef VERIFY
|
||||
int zero_in = secp256k1_scalar_is_zero(x);
|
||||
#endif
|
||||
secp256k1_scalar_to_signed62(&s, x);
|
||||
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_scalar);
|
||||
secp256k1_scalar_from_signed62(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
|
||||
return !(a->d[0] & 1);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
|
||||
|
|
|
@ -7,6 +7,8 @@
|
|||
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
|
||||
#define SECP256K1_SCALAR_REPR_IMPL_H
|
||||
|
||||
#include "modinv32_impl.h"
|
||||
|
||||
/* Limbs of the secp256k1 order. */
|
||||
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
|
||||
#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
|
||||
|
@ -291,28 +293,6 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
|||
VERIFY_CHECK(c1 >= th); \
|
||||
}
|
||||
|
||||
/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
|
||||
#define muladd2(a,b) { \
|
||||
uint32_t tl, th, th2, tl2; \
|
||||
{ \
|
||||
uint64_t t = (uint64_t)a * b; \
|
||||
th = t >> 32; /* at most 0xFFFFFFFE */ \
|
||||
tl = t; \
|
||||
} \
|
||||
th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
|
||||
c2 += (th2 < th); /* never overflows by contract (verified the next line) */ \
|
||||
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
|
||||
tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
|
||||
th2 += (tl2 < tl); /* at most 0xFFFFFFFF */ \
|
||||
c0 += tl2; /* overflow is handled on the next line */ \
|
||||
th2 += (c0 < tl2); /* second overflow is handled on the next line */ \
|
||||
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
|
||||
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
|
||||
c1 += th2; /* overflow is handled on the next line */ \
|
||||
c2 += (c1 < th2); /* never overflows by contract (verified the next line) */ \
|
||||
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
|
||||
}
|
||||
|
||||
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
|
||||
#define sumadd(a) { \
|
||||
unsigned int over; \
|
||||
|
@ -576,71 +556,10 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, con
|
|||
l[15] = c0;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
|
||||
/* 96 bit accumulator. */
|
||||
uint32_t c0 = 0, c1 = 0, c2 = 0;
|
||||
|
||||
/* l[0..15] = a[0..7]^2. */
|
||||
muladd_fast(a->d[0], a->d[0]);
|
||||
extract_fast(l[0]);
|
||||
muladd2(a->d[0], a->d[1]);
|
||||
extract(l[1]);
|
||||
muladd2(a->d[0], a->d[2]);
|
||||
muladd(a->d[1], a->d[1]);
|
||||
extract(l[2]);
|
||||
muladd2(a->d[0], a->d[3]);
|
||||
muladd2(a->d[1], a->d[2]);
|
||||
extract(l[3]);
|
||||
muladd2(a->d[0], a->d[4]);
|
||||
muladd2(a->d[1], a->d[3]);
|
||||
muladd(a->d[2], a->d[2]);
|
||||
extract(l[4]);
|
||||
muladd2(a->d[0], a->d[5]);
|
||||
muladd2(a->d[1], a->d[4]);
|
||||
muladd2(a->d[2], a->d[3]);
|
||||
extract(l[5]);
|
||||
muladd2(a->d[0], a->d[6]);
|
||||
muladd2(a->d[1], a->d[5]);
|
||||
muladd2(a->d[2], a->d[4]);
|
||||
muladd(a->d[3], a->d[3]);
|
||||
extract(l[6]);
|
||||
muladd2(a->d[0], a->d[7]);
|
||||
muladd2(a->d[1], a->d[6]);
|
||||
muladd2(a->d[2], a->d[5]);
|
||||
muladd2(a->d[3], a->d[4]);
|
||||
extract(l[7]);
|
||||
muladd2(a->d[1], a->d[7]);
|
||||
muladd2(a->d[2], a->d[6]);
|
||||
muladd2(a->d[3], a->d[5]);
|
||||
muladd(a->d[4], a->d[4]);
|
||||
extract(l[8]);
|
||||
muladd2(a->d[2], a->d[7]);
|
||||
muladd2(a->d[3], a->d[6]);
|
||||
muladd2(a->d[4], a->d[5]);
|
||||
extract(l[9]);
|
||||
muladd2(a->d[3], a->d[7]);
|
||||
muladd2(a->d[4], a->d[6]);
|
||||
muladd(a->d[5], a->d[5]);
|
||||
extract(l[10]);
|
||||
muladd2(a->d[4], a->d[7]);
|
||||
muladd2(a->d[5], a->d[6]);
|
||||
extract(l[11]);
|
||||
muladd2(a->d[5], a->d[7]);
|
||||
muladd(a->d[6], a->d[6]);
|
||||
extract(l[12]);
|
||||
muladd2(a->d[6], a->d[7]);
|
||||
extract(l[13]);
|
||||
muladd_fast(a->d[7], a->d[7]);
|
||||
extract_fast(l[14]);
|
||||
VERIFY_CHECK(c1 == 0);
|
||||
l[15] = c0;
|
||||
}
|
||||
|
||||
#undef sumadd
|
||||
#undef sumadd_fast
|
||||
#undef muladd
|
||||
#undef muladd_fast
|
||||
#undef muladd2
|
||||
#undef extract
|
||||
#undef extract_fast
|
||||
|
||||
|
@ -666,12 +585,6 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
uint32_t l[16];
|
||||
secp256k1_scalar_sqr_512(l, a);
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
r1->d[0] = k->d[0];
|
||||
r1->d[1] = k->d[1];
|
||||
|
@ -731,4 +644,92 @@ static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const se
|
|||
r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) {
|
||||
const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4],
|
||||
a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8];
|
||||
|
||||
/* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and
|
||||
* have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8).
|
||||
*/
|
||||
VERIFY_CHECK(a0 >> 30 == 0);
|
||||
VERIFY_CHECK(a1 >> 30 == 0);
|
||||
VERIFY_CHECK(a2 >> 30 == 0);
|
||||
VERIFY_CHECK(a3 >> 30 == 0);
|
||||
VERIFY_CHECK(a4 >> 30 == 0);
|
||||
VERIFY_CHECK(a5 >> 30 == 0);
|
||||
VERIFY_CHECK(a6 >> 30 == 0);
|
||||
VERIFY_CHECK(a7 >> 30 == 0);
|
||||
VERIFY_CHECK(a8 >> 16 == 0);
|
||||
|
||||
r->d[0] = a0 | a1 << 30;
|
||||
r->d[1] = a1 >> 2 | a2 << 28;
|
||||
r->d[2] = a2 >> 4 | a3 << 26;
|
||||
r->d[3] = a3 >> 6 | a4 << 24;
|
||||
r->d[4] = a4 >> 8 | a5 << 22;
|
||||
r->d[5] = a5 >> 10 | a6 << 20;
|
||||
r->d[6] = a6 >> 12 | a7 << 18;
|
||||
r->d[7] = a7 >> 14 | a8 << 16;
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) {
|
||||
const uint32_t M30 = UINT32_MAX >> 2;
|
||||
const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3],
|
||||
a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7];
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0);
|
||||
#endif
|
||||
|
||||
r->v[0] = a0 & M30;
|
||||
r->v[1] = (a0 >> 30 | a1 << 2) & M30;
|
||||
r->v[2] = (a1 >> 28 | a2 << 4) & M30;
|
||||
r->v[3] = (a2 >> 26 | a3 << 6) & M30;
|
||||
r->v[4] = (a3 >> 24 | a4 << 8) & M30;
|
||||
r->v[5] = (a4 >> 22 | a5 << 10) & M30;
|
||||
r->v[6] = (a5 >> 20 | a6 << 12) & M30;
|
||||
r->v[7] = (a6 >> 18 | a7 << 14) & M30;
|
||||
r->v[8] = a7 >> 16;
|
||||
}
|
||||
|
||||
static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar = {
|
||||
{{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}},
|
||||
0x2A774EC1L
|
||||
};
|
||||
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
secp256k1_modinv32_signed30 s;
|
||||
#ifdef VERIFY
|
||||
int zero_in = secp256k1_scalar_is_zero(x);
|
||||
#endif
|
||||
secp256k1_scalar_to_signed30(&s, x);
|
||||
secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar);
|
||||
secp256k1_scalar_from_signed30(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
secp256k1_modinv32_signed30 s;
|
||||
#ifdef VERIFY
|
||||
int zero_in = secp256k1_scalar_is_zero(x);
|
||||
#endif
|
||||
secp256k1_scalar_to_signed30(&s, x);
|
||||
secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar);
|
||||
secp256k1_scalar_from_signed30(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
|
||||
return !(a->d[0] & 1);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
|
||||
|
|
|
@ -31,231 +31,12 @@
|
|||
static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
||||
static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
|
||||
unsigned char c[32];
|
||||
secp256k1_scalar_get_b32(c, a);
|
||||
secp256k1_num_set_bin(r, c, 32);
|
||||
}
|
||||
|
||||
/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
|
||||
static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
static const unsigned char order[32] = {
|
||||
0,0,0,0,0,0,0,0,
|
||||
0,0,0,0,0,0,0,0,
|
||||
0,0,0,0,0,0,0,0,
|
||||
0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
|
||||
};
|
||||
#else
|
||||
static const unsigned char order[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
||||
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
||||
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
|
||||
};
|
||||
#endif
|
||||
secp256k1_num_set_bin(r, order, 32);
|
||||
}
|
||||
#endif
|
||||
|
||||
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
|
||||
int overflow;
|
||||
secp256k1_scalar_set_b32(r, bin, &overflow);
|
||||
return (!overflow) & (!secp256k1_scalar_is_zero(r));
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
int i;
|
||||
*r = 0;
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
|
||||
if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
|
||||
*r = i;
|
||||
/* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
|
||||
* have a composite group order; fix it in exhaustive_tests.c). */
|
||||
VERIFY_CHECK(*r != 0);
|
||||
}
|
||||
#else
|
||||
secp256k1_scalar *t;
|
||||
int i;
|
||||
/* First compute xN as x ^ (2^N - 1) for some values of N,
|
||||
* and uM as x ^ M for some values of M. */
|
||||
secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126;
|
||||
secp256k1_scalar u2, u5, u9, u11, u13;
|
||||
|
||||
secp256k1_scalar_sqr(&u2, x);
|
||||
secp256k1_scalar_mul(&x2, &u2, x);
|
||||
secp256k1_scalar_mul(&u5, &u2, &x2);
|
||||
secp256k1_scalar_mul(&x3, &u5, &u2);
|
||||
secp256k1_scalar_mul(&u9, &x3, &u2);
|
||||
secp256k1_scalar_mul(&u11, &u9, &u2);
|
||||
secp256k1_scalar_mul(&u13, &u11, &u2);
|
||||
|
||||
secp256k1_scalar_sqr(&x6, &u13);
|
||||
secp256k1_scalar_sqr(&x6, &x6);
|
||||
secp256k1_scalar_mul(&x6, &x6, &u11);
|
||||
|
||||
secp256k1_scalar_sqr(&x8, &x6);
|
||||
secp256k1_scalar_sqr(&x8, &x8);
|
||||
secp256k1_scalar_mul(&x8, &x8, &x2);
|
||||
|
||||
secp256k1_scalar_sqr(&x14, &x8);
|
||||
for (i = 0; i < 5; i++) {
|
||||
secp256k1_scalar_sqr(&x14, &x14);
|
||||
}
|
||||
secp256k1_scalar_mul(&x14, &x14, &x6);
|
||||
|
||||
secp256k1_scalar_sqr(&x28, &x14);
|
||||
for (i = 0; i < 13; i++) {
|
||||
secp256k1_scalar_sqr(&x28, &x28);
|
||||
}
|
||||
secp256k1_scalar_mul(&x28, &x28, &x14);
|
||||
|
||||
secp256k1_scalar_sqr(&x56, &x28);
|
||||
for (i = 0; i < 27; i++) {
|
||||
secp256k1_scalar_sqr(&x56, &x56);
|
||||
}
|
||||
secp256k1_scalar_mul(&x56, &x56, &x28);
|
||||
|
||||
secp256k1_scalar_sqr(&x112, &x56);
|
||||
for (i = 0; i < 55; i++) {
|
||||
secp256k1_scalar_sqr(&x112, &x112);
|
||||
}
|
||||
secp256k1_scalar_mul(&x112, &x112, &x56);
|
||||
|
||||
secp256k1_scalar_sqr(&x126, &x112);
|
||||
for (i = 0; i < 13; i++) {
|
||||
secp256k1_scalar_sqr(&x126, &x126);
|
||||
}
|
||||
secp256k1_scalar_mul(&x126, &x126, &x14);
|
||||
|
||||
/* Then accumulate the final result (t starts at x126). */
|
||||
t = &x126;
|
||||
for (i = 0; i < 3; i++) {
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u5); /* 101 */
|
||||
for (i = 0; i < 4; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x3); /* 111 */
|
||||
for (i = 0; i < 4; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u5); /* 101 */
|
||||
for (i = 0; i < 5; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
|
||||
for (i = 0; i < 4; i++) {
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
|
||||
for (i = 0; i < 4; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x3); /* 111 */
|
||||
for (i = 0; i < 5; i++) { /* 00 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x3); /* 111 */
|
||||
for (i = 0; i < 6; i++) { /* 00 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
|
||||
for (i = 0; i < 4; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u5); /* 101 */
|
||||
for (i = 0; i < 3; i++) {
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x3); /* 111 */
|
||||
for (i = 0; i < 5; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
|
||||
for (i = 0; i < 6; i++) { /* 000 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u5); /* 101 */
|
||||
for (i = 0; i < 10; i++) { /* 0000000 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x3); /* 111 */
|
||||
for (i = 0; i < 4; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x3); /* 111 */
|
||||
for (i = 0; i < 9; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
|
||||
for (i = 0; i < 5; i++) { /* 0 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
|
||||
for (i = 0; i < 6; i++) { /* 00 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
|
||||
for (i = 0; i < 4; i++) {
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
|
||||
for (i = 0; i < 5; i++) {
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &x2); /* 11 */
|
||||
for (i = 0; i < 6; i++) { /* 00 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
|
||||
for (i = 0; i < 10; i++) { /* 000000 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
|
||||
for (i = 0; i < 4; i++) {
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
|
||||
for (i = 0; i < 6; i++) { /* 00000 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(t, t, x); /* 1 */
|
||||
for (i = 0; i < 8; i++) { /* 00 */
|
||||
secp256k1_scalar_sqr(t, t);
|
||||
}
|
||||
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
|
||||
return !(a->d[0] & 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
#if defined(USE_SCALAR_INV_BUILTIN)
|
||||
secp256k1_scalar_inverse(r, x);
|
||||
#elif defined(USE_SCALAR_INV_NUM)
|
||||
unsigned char b[32];
|
||||
secp256k1_num n, m;
|
||||
secp256k1_scalar t = *x;
|
||||
secp256k1_scalar_get_b32(b, &t);
|
||||
secp256k1_num_set_bin(&n, b, 32);
|
||||
secp256k1_scalar_order_get_num(&m);
|
||||
secp256k1_num_mod_inverse(&n, &n, &m);
|
||||
secp256k1_num_get_bin(b, 32, &n);
|
||||
secp256k1_scalar_set_b32(r, b, NULL);
|
||||
/* Verify that the inverse was computed correctly, without GMP code. */
|
||||
secp256k1_scalar_mul(&t, &t, r);
|
||||
CHECK(secp256k1_scalar_is_one(&t));
|
||||
#else
|
||||
#error "Please select scalar inverse implementation"
|
||||
#endif
|
||||
}
|
||||
|
||||
/* These parameters are generated using sage/gen_exhaustive_groups.sage. */
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
# if EXHAUSTIVE_TEST_ORDER == 13
|
||||
|
|
|
@ -104,10 +104,6 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
||||
*r = (*a * *a) % EXHAUSTIVE_TEST_ORDER;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
*r1 = *a;
|
||||
*r2 = 0;
|
||||
|
@ -125,4 +121,19 @@ static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const se
|
|||
*r = (*r & mask0) | (*a & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
int i;
|
||||
*r = 0;
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
|
||||
if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
|
||||
*r = i;
|
||||
/* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
|
||||
* have a composite group order; fix it in exhaustive_tests.c). */
|
||||
VERIFY_CHECK(*r != 0);
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
||||
secp256k1_scalar_inverse(r, x);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
|
||||
#include "assumptions.h"
|
||||
#include "util.h"
|
||||
#include "num_impl.h"
|
||||
#include "field_impl.h"
|
||||
#include "scalar_impl.h"
|
||||
#include "group_impl.h"
|
||||
|
|
1015
src/tests.c
1015
src/tests.c
File diff suppressed because it is too large
Load Diff
65
src/util.h
65
src/util.h
|
@ -276,4 +276,69 @@ SECP256K1_GNUC_EXT typedef __int128 int128_t;
|
|||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef __has_builtin
|
||||
#define __has_builtin(x) 0
|
||||
#endif
|
||||
|
||||
/* Determine the number of trailing zero bits in a (non-zero) 32-bit x.
|
||||
* This function is only intended to be used as fallback for
|
||||
* secp256k1_ctz32_var, but permits it to be tested separately. */
|
||||
static SECP256K1_INLINE int secp256k1_ctz32_var_debruijn(uint32_t x) {
|
||||
static const uint8_t debruijn[32] = {
|
||||
0x00, 0x01, 0x02, 0x18, 0x03, 0x13, 0x06, 0x19, 0x16, 0x04, 0x14, 0x0A,
|
||||
0x10, 0x07, 0x0C, 0x1A, 0x1F, 0x17, 0x12, 0x05, 0x15, 0x09, 0x0F, 0x0B,
|
||||
0x1E, 0x11, 0x08, 0x0E, 0x1D, 0x0D, 0x1C, 0x1B
|
||||
};
|
||||
return debruijn[((x & -x) * 0x04D7651F) >> 27];
|
||||
}
|
||||
|
||||
/* Determine the number of trailing zero bits in a (non-zero) 64-bit x.
|
||||
* This function is only intended to be used as fallback for
|
||||
* secp256k1_ctz64_var, but permits it to be tested separately. */
|
||||
static SECP256K1_INLINE int secp256k1_ctz64_var_debruijn(uint64_t x) {
|
||||
static const uint8_t debruijn[64] = {
|
||||
0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
|
||||
62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
|
||||
63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
|
||||
51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
|
||||
};
|
||||
return debruijn[((x & -x) * 0x022FDD63CC95386D) >> 58];
|
||||
}
|
||||
|
||||
/* Determine the number of trailing zero bits in a (non-zero) 32-bit x. */
|
||||
static SECP256K1_INLINE int secp256k1_ctz32_var(uint32_t x) {
|
||||
VERIFY_CHECK(x != 0);
|
||||
#if (__has_builtin(__builtin_ctz) || SECP256K1_GNUC_PREREQ(3,4))
|
||||
/* If the unsigned type is sufficient to represent the largest uint32_t, consider __builtin_ctz. */
|
||||
if (((unsigned)UINT32_MAX) == UINT32_MAX) {
|
||||
return __builtin_ctz(x);
|
||||
}
|
||||
#endif
|
||||
#if (__has_builtin(__builtin_ctzl) || SECP256K1_GNUC_PREREQ(3,4))
|
||||
/* Otherwise consider __builtin_ctzl (the unsigned long type is always at least 32 bits). */
|
||||
return __builtin_ctzl(x);
|
||||
#else
|
||||
/* If no suitable CTZ builtin is available, use a (variable time) software emulation. */
|
||||
return secp256k1_ctz32_var_debruijn(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Determine the number of trailing zero bits in a (non-zero) 64-bit x. */
|
||||
static SECP256K1_INLINE int secp256k1_ctz64_var(uint64_t x) {
|
||||
VERIFY_CHECK(x != 0);
|
||||
#if (__has_builtin(__builtin_ctzl) || SECP256K1_GNUC_PREREQ(3,4))
|
||||
/* If the unsigned long type is sufficient to represent the largest uint64_t, consider __builtin_ctzl. */
|
||||
if (((unsigned long)UINT64_MAX) == UINT64_MAX) {
|
||||
return __builtin_ctzl(x);
|
||||
}
|
||||
#endif
|
||||
#if (__has_builtin(__builtin_ctzll) || SECP256K1_GNUC_PREREQ(3,4))
|
||||
/* Otherwise consider __builtin_ctzll (the unsigned long long type is always at least 64 bits). */
|
||||
return __builtin_ctzll(x);
|
||||
#else
|
||||
/* If no suitable CTZ builtin is available, use a (variable time) software emulation. */
|
||||
return secp256k1_ctz64_var_debruijn(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_UTIL_H */
|
||||
|
|
Loading…
Reference in New Issue