Add safegcd based modular inverse modules

Refactored by: Pieter Wuille <pieter@wuille.net>
This commit is contained in:
Peter Dettman 2020-11-29 14:01:03 -08:00 committed by Pieter Wuille
parent de0a643c3d
commit 8e415acba2
5 changed files with 801 additions and 0 deletions

View File

@ -34,6 +34,10 @@ noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/modinv32.h
noinst_HEADERS += src/modinv32_impl.h
noinst_HEADERS += src/modinv64.h
noinst_HEADERS += src/modinv64_impl.h
noinst_HEADERS += src/assumptions.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/scratch.h

31
src/modinv32.h Normal file
View File

@ -0,0 +1,31 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV32_H
#define SECP256K1_MODINV32_H
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
typedef struct {
int32_t v[9];
} secp256k1_modinv32_signed30;
typedef struct {
/* The modulus in signed30 notation. */
secp256k1_modinv32_signed30 modulus;
/* modulus^{-1} mod 2^30 */
uint32_t modulus_inv30;
} secp256k1_modinv32_modinfo;
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
#endif /* SECP256K1_MODINV32_H */

364
src/modinv32_impl.h Normal file
View File

@ -0,0 +1,364 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV32_IMPL_H
#define SECP256K1_MODINV32_IMPL_H
#include "modinv32.h"
#include "util.h"
static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
int32_t cond_add, cond_negate;
cond_add = r8 >> 31;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r5 += modinfo->modulus.v[5] & cond_add;
r6 += modinfo->modulus.v[6] & cond_add;
r7 += modinfo->modulus.v[7] & cond_add;
r8 += modinfo->modulus.v[8] & cond_add;
cond_negate = sign >> 31;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
r5 = (r5 ^ cond_negate) - cond_negate;
r6 = (r6 ^ cond_negate) - cond_negate;
r7 = (r7 ^ cond_negate) - cond_negate;
r8 = (r8 ^ cond_negate) - cond_negate;
r1 += r0 >> 30; r0 &= M30;
r2 += r1 >> 30; r1 &= M30;
r3 += r2 >> 30; r2 &= M30;
r4 += r3 >> 30; r3 &= M30;
r5 += r4 >> 30; r4 &= M30;
r6 += r5 >> 30; r5 &= M30;
r7 += r6 >> 30; r6 &= M30;
r8 += r7 >> 30; r7 &= M30;
cond_add = r8 >> 31;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r5 += modinfo->modulus.v[5] & cond_add;
r6 += modinfo->modulus.v[6] & cond_add;
r7 += modinfo->modulus.v[7] & cond_add;
r8 += modinfo->modulus.v[8] & cond_add;
r1 += r0 >> 30; r0 &= M30;
r2 += r1 >> 30; r1 &= M30;
r3 += r2 >> 30; r2 &= M30;
r4 += r3 >> 30; r3 &= M30;
r5 += r4 >> 30; r4 &= M30;
r6 += r5 >> 30; r5 &= M30;
r7 += r6 >> 30; r6 &= M30;
r8 += r7 >> 30; r7 &= M30;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
r->v[5] = r5;
r->v[6] = r6;
r->v[7] = r7;
r->v[8] = r8;
}
typedef struct {
int32_t u, v, q, r;
} secp256k1_modinv32_trans2x2;
static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t c1, c2, f = f0, g = g0, x, y, z;
int i;
for (i = 0; i < 30; ++i) {
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << i);
VERIFY_CHECK((q * f0 + r * g0) == g << i);
c1 = eta >> 31;
c2 = -(g & 1);
x = (f ^ c1) - c1;
y = (u ^ c1) - c1;
z = (v ^ c1) - c1;
g += x & c2;
q += y & c2;
r += z & c2;
c1 &= c2;
eta = (eta ^ c1) - (c1 + 1);
f += g & c1;
u += q & c1;
v += r & c1;
g >>= 1;
u <<= 1;
v <<= 1;
}
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
return eta;
}
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
/* inv256[i] = -(2*i+1)^-1 (mod 256) */
static const uint8_t inv256[128] = {
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
};
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
uint16_t w;
int i = 30, limit, zeros;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
if (i <= 0) {
break;
}
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
if (eta < 0) {
uint32_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
}
/* Handle up to 8 divsteps at once, subject to eta and i. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
m = (UINT32_MAX >> (32 - limit)) & 255U;
w = (g * inv256[(f >> 1) & 127]) & m;
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
return eta;
}
static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t di, ei, md, me, sd, se;
int64_t cd, ce;
int i;
/*
* On input, d/e must be in the range (-2.P, P). For initially negative d (resp. e), we add
* u and/or v (resp. q and/or r) multiples of the modulus to the corresponding output (prior
* to division by 2^30). This has the same effect as if we added the modulus to the input(s).
*/
sd = d->v[8] >> 31;
se = e->v[8] >> 31;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
di = d->v[0];
ei = e->v[0];
cd = (int64_t)u * di + (int64_t)v * ei;
ce = (int64_t)q * di + (int64_t)r * ei;
/*
* Subtract from md/me an extra term in the range [0, 2^30) such that the low 30 bits of each
* sum of products will be 0. This allows clean division by 2^30. On output, d/e are thus in
* the range (-2.P, P), consistent with the input constraint.
*/
md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
cd += (int64_t)modinfo->modulus.v[0] * md;
ce += (int64_t)modinfo->modulus.v[0] * me;
VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
for (i = 1; i < 9; ++i) {
di = d->v[i];
ei = e->v[i];
cd += (int64_t)u * di + (int64_t)v * ei;
ce += (int64_t)q * di + (int64_t)r * ei;
cd += (int64_t)modinfo->modulus.v[i] * md;
ce += (int64_t)modinfo->modulus.v[i] * me;
d->v[i - 1] = (int32_t)cd & M30; cd >>= 30;
e->v[i - 1] = (int32_t)ce & M30; ce >>= 30;
}
d->v[8] = (int32_t)cd;
e->v[8] = (int32_t)ce;
}
static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
VERIFY_CHECK(((int32_t)cf & M30) == 0);
VERIFY_CHECK(((int32_t)cg & M30) == 0);
cf >>= 30;
cg >>= 30;
for (i = 1; i < 9; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
}
f->v[8] = (int32_t)cf;
g->v[8] = (int32_t)cg;
}
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */
secp256k1_modinv32_signed30 d = {{0}};
secp256k1_modinv32_signed30 e = {{1}};
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
int i;
int32_t eta;
/* The paper uses 'delta'; eta == -delta (a performance tweak).
*
* If the maximum bitlength of g is known to be less than 256, then eta can be set
* initially to -(1 + (256 - maxlen(g))), and only (741 - (256 - maxlen(g))) total
* divsteps are needed. */
eta = -1;
for (i = 0; i < 25; ++i) {
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_divsteps_30(eta, f.v[0], g.v[0], &t);
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
secp256k1_modinv32_update_fg_30(&f, &g, &t);
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8]) == 0);
secp256k1_modinv32_normalize_30(&d, f.v[8] >> 31, modinfo);
*x = d;
}
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */
secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}};
secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}};
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
int j;
int32_t eta;
int32_t cond;
/* The paper uses 'delta'; eta == -delta (a performance tweak).
*
* If g has leading zeros (w.r.t 256 bits), then eta can be set initially to
* -(1 + clz(g)), and the worst-case divstep count would be only (741 - clz(g)). */
eta = -1;
while (1) {
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t);
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
secp256k1_modinv32_update_fg_30(&f, &g, &t);
if (g.v[0] == 0) {
cond = 0;
for (j = 1; j < 9; ++j) {
cond |= g.v[j];
}
if (cond == 0) break;
}
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
secp256k1_modinv32_normalize_30(&d, f.v[8] >> 31, modinfo);
*x = d;
}
#endif /* SECP256K1_MODINV32_IMPL_H */

35
src/modinv64.h Normal file
View File

@ -0,0 +1,35 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV64_H
#define SECP256K1_MODINV64_H
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#ifndef SECP256K1_WIDEMUL_INT128
#error "modinv64 requires 128-bit wide multiplication support"
#endif
typedef struct {
int64_t v[5];
} secp256k1_modinv64_signed62;
typedef struct {
/* The modulus in signed62 notation. */
secp256k1_modinv64_signed62 modulus;
/* modulus^{-1} mod 2^62 */
uint64_t modulus_inv62;
} secp256k1_modinv64_modinfo;
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
#endif /* SECP256K1_MODINV64_H */

367
src/modinv64_impl.h Normal file
View File

@ -0,0 +1,367 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV64_IMPL_H
#define SECP256K1_MODINV64_IMPL_H
#include "modinv64.h"
#include "util.h"
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
int64_t cond_add, cond_negate;
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
cond_negate = sign >> 63;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
}
typedef struct {
int64_t u, v, q, r;
} secp256k1_modinv64_trans2x2;
static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
uint64_t u = 1, v = 0, q = 0, r = 1;
uint64_t c1, c2, f = f0, g = g0, x, y, z;
int i;
for (i = 0; i < 62; ++i) {
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << i);
VERIFY_CHECK((q * f0 + r * g0) == g << i);
c1 = eta >> 63;
c2 = -(g & 1);
x = (f ^ c1) - c1;
y = (u ^ c1) - c1;
z = (v ^ c1) - c1;
g += x & c2;
q += y & c2;
r += z & c2;
c1 &= c2;
eta = (eta ^ c1) - (c1 + 1);
f += g & c1;
u += q & c1;
v += r & c1;
g >>= 1;
u <<= 1;
v <<= 1;
}
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
return eta;
}
static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
/* inv256[i] = -(2*i+1)^-1 (mod 256) */
static const uint8_t inv256[128] = {
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
};
uint64_t u = 1, v = 0, q = 0, r = 1;
uint64_t f = f0, g = g0, m;
uint32_t w;
int i = 62, limit, zeros;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
if (i <= 0) {
break;
}
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
if (eta < 0) {
uint64_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
}
/* Handle up to 8 divsteps at once, subject to eta and i. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
m = (UINT64_MAX >> (64 - limit)) & 255U;
w = (g * inv256[(f >> 1) & 127]) & m;
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
return eta;
}
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t md, me, sd, se;
int128_t cd, ce;
/*
* On input, d/e must be in the range (-2.P, P). For initially negative d (resp. e), we add
* u and/or v (resp. q and/or r) multiples of the modulus to the corresponding output (prior
* to division by 2^62). This has the same effect as if we added the modulus to the input(s).
*/
sd = d4 >> 63;
se = e4 >> 63;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
cd = (int128_t)u * d0 + (int128_t)v * e0;
ce = (int128_t)q * d0 + (int128_t)r * e0;
/*
* Subtract from md/me an extra term in the range [0, 2^62) such that the low 62 bits of each
* sum of products will be 0. This allows clean division by 2^62. On output, d/e are thus in
* the range (-2.P, P), consistent with the input constraint.
*/
md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62;
me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62;
cd += (int128_t)modinfo->modulus.v[0] * md;
ce += (int128_t)modinfo->modulus.v[0] * me;
VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62;
VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62;
cd += (int128_t)u * d1 + (int128_t)v * e1;
ce += (int128_t)q * d1 + (int128_t)r * e1;
cd += (int128_t)modinfo->modulus.v[1] * md;
ce += (int128_t)modinfo->modulus.v[1] * me;
d->v[0] = (int64_t)cd & M62; cd >>= 62;
e->v[0] = (int64_t)ce & M62; ce >>= 62;
cd += (int128_t)u * d2 + (int128_t)v * e2;
ce += (int128_t)q * d2 + (int128_t)r * e2;
cd += (int128_t)modinfo->modulus.v[2] * md;
ce += (int128_t)modinfo->modulus.v[2] * me;
d->v[1] = (int64_t)cd & M62; cd >>= 62;
e->v[1] = (int64_t)ce & M62; ce >>= 62;
cd += (int128_t)u * d3 + (int128_t)v * e3;
ce += (int128_t)q * d3 + (int128_t)r * e3;
cd += (int128_t)modinfo->modulus.v[3] * md;
ce += (int128_t)modinfo->modulus.v[3] * me;
d->v[2] = (int64_t)cd & M62; cd >>= 62;
e->v[2] = (int64_t)ce & M62; ce >>= 62;
cd += (int128_t)u * d4 + (int128_t)v * e4;
ce += (int128_t)q * d4 + (int128_t)r * e4;
cd += (int128_t)modinfo->modulus.v[4] * md;
ce += (int128_t)modinfo->modulus.v[4] * me;
d->v[3] = (int64_t)cd & M62; cd >>= 62;
e->v[3] = (int64_t)ce & M62; ce >>= 62;
d->v[4] = (int64_t)cd;
e->v[4] = (int64_t)ce;
}
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int128_t cf, cg;
cf = (int128_t)u * f0 + (int128_t)v * g0;
cg = (int128_t)q * f0 + (int128_t)r * g0;
VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
cf += (int128_t)u * f1 + (int128_t)v * g1;
cg += (int128_t)q * f1 + (int128_t)r * g1;
f->v[0] = (int64_t)cf & M62; cf >>= 62;
g->v[0] = (int64_t)cg & M62; cg >>= 62;
cf += (int128_t)u * f2 + (int128_t)v * g2;
cg += (int128_t)q * f2 + (int128_t)r * g2;
f->v[1] = (int64_t)cf & M62; cf >>= 62;
g->v[1] = (int64_t)cg & M62; cg >>= 62;
cf += (int128_t)u * f3 + (int128_t)v * g3;
cg += (int128_t)q * f3 + (int128_t)r * g3;
f->v[2] = (int64_t)cf & M62; cf >>= 62;
g->v[2] = (int64_t)cg & M62; cg >>= 62;
cf += (int128_t)u * f4 + (int128_t)v * g4;
cg += (int128_t)q * f4 + (int128_t)r * g4;
f->v[3] = (int64_t)cf & M62; cf >>= 62;
g->v[3] = (int64_t)cg & M62; cg >>= 62;
f->v[4] = (int64_t)cf;
g->v[4] = (int64_t)cg;
}
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
/* Modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 f = modinfo->modulus;
secp256k1_modinv64_signed62 g = *x;
int i;
int64_t eta;
/* The paper uses 'delta'; eta == -delta (a performance tweak).
*
* If the maximum bitlength of g is known to be less than 256, then eta can be set
* initially to -(1 + (256 - maxlen(g))), and only (741 - (256 - maxlen(g))) total
* divsteps are needed. */
eta = -1;
for (i = 0; i < 12; ++i) {
secp256k1_modinv64_trans2x2 t;
eta = secp256k1_modinv64_divsteps_62(eta, f.v[0], g.v[0], &t);
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
secp256k1_modinv64_update_fg_62(&f, &g, &t);
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) == 0);
secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
*x = d;
}
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
/* Modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 f = modinfo->modulus;
secp256k1_modinv64_signed62 g = *x;
int j;
uint64_t eta;
int64_t cond;
/* The paper uses 'delta'; eta == -delta (a performance tweak).
*
* If g has leading zeros (w.r.t 256 bits), then eta can be set initially to
* -(1 + clz(g)), and the worst-case divstep count would be only (741 - clz(g)). */
eta = -1;
while (1) {
secp256k1_modinv64_trans2x2 t;
eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
secp256k1_modinv64_update_fg_62(&f, &g, &t);
if (g.v[0] == 0) {
cond = 0;
for (j = 1; j < 5; ++j) {
cond |= g.v[j];
}
if (cond == 0) break;
}
}
secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
*x = d;
}
#endif /* SECP256K1_MODINV64_IMPL_H */