research/clock_disparity/test.py

56 lines
1.9 KiB
Python
Raw Normal View History

2018-05-23 00:22:10 +00:00
from networksim import NetworkSimulator
2018-07-23 21:05:30 +00:00
from ghost_node import Node, NOTARIES, Block, genesis
2018-05-23 00:22:10 +00:00
from distributions import normal_distribution
net = NetworkSimulator(latency=22)
notaries = [Node(i, net, ts=max(normal_distribution(300, 300)(), 0) * 0.1, sleepy=i%4==0) for i in range(NOTARIES)]
2018-05-23 00:22:10 +00:00
net.agents = notaries
net.generate_peers()
2018-06-09 10:04:04 +00:00
for i in range(100000):
2018-05-23 00:22:10 +00:00
net.tick()
for n in notaries:
2018-06-09 10:04:04 +00:00
print("Local timestamp: %.1f, timequeue len %d" % (n.ts, len(n.timequeue)))
2018-05-23 00:22:10 +00:00
print("Main chain head: %d" % n.blocks[n.main_chain[-1]].number)
2018-06-09 10:04:04 +00:00
print("Total main chain blocks received: %d" % (len([b for b in n.blocks.values() if isinstance(b, Block)]) - 1))
print("Notarized main chain blocks received: %d" % (len([b for b in n.blocks.values() if isinstance(b, Block) and n.is_notarized(b)]) - 1))
2018-05-23 00:22:10 +00:00
import matplotlib.pyplot as plt
import networkx as nx
import random
G=nx.Graph()
2018-06-09 10:04:04 +00:00
#positions = {genesis.hash: 0, beacon_genesis.hash: 0}
2018-05-23 00:22:10 +00:00
#queue = [
for b in n.blocks.values():
2018-06-09 10:04:04 +00:00
for en in notaries:
if isinstance(b, Block) and b.hash in en.processed and b.hash not in en.blocks:
assert (not en.have_ancestry(b.hash)) or b.ts > en.ts
2018-05-23 00:22:10 +00:00
if b.number > 0:
2018-06-09 10:04:04 +00:00
if isinstance(b, Block):
if n.is_notarized(b):
G.add_edge(b.hash, b.parent_hash, color='b')
else:
G.add_edge(b.hash, b.parent_hash, color='#dddddd')
2018-05-23 00:22:10 +00:00
2018-06-09 10:04:04 +00:00
cache = {genesis.hash: 0}
2018-05-23 00:22:10 +00:00
def mkoffset(b):
if b.hash not in cache:
cache[b.hash] = cache[b.parent_hash] + random.randrange(35)
return cache[b.hash]
pos={b.hash: (b.ts + mkoffset(b), b.ts) for b in n.blocks.values()}
edges = G.edges()
colors = [G[u][v]['color'] for u,v in edges]
nx.draw_networkx_nodes(G,pos,node_size=10,node_shape='o',node_color='0.75')
nx.draw_networkx_edges(G,pos,
width=2,edge_color=colors)
plt.axis('off')
# plt.savefig("degree.png", bbox_inches="tight")
plt.show()