* clean up / document init
* drop `immutable_validators` data (pre-altair)
* document versions where data is first added
* avoid needlessly loading genesis block data on startup
* add a few more internal database consistency checks
* remove duplicate state root lookup on state load
* comment
When initializing backfill sync, the implementation intends to start at
the first unknown slot (`1` before tail). However, an incorrect variable
is passed, and backfill sync actually starts at the tail slot instead.
This patch corrects this by passing the intended variable. The problem
was introduced with the original backfill implementation at #3263.
The added options work in opt-in fashion. If they are not specified,
the server will respond to all requests as if the CORS specification
doesn't exist. This will result in errors in CORS-enabled clients.
Please note that future versions may support more than one allowed
origin. The option names will stay the same, but the user will be
able to repeat them on the command line (similar to other options
such as --web3-url).
To be documented in the guide in a separate PR.
The `SyncManager` has a leftover optional `sleepTime` parameter in
its constructor that used to configure the sync loop polling rate.
This parameter was replaced with a constant in #1602 and is no longer
functional. This patch removes the `sleepTime` leftovers.
#3304 introduced a regression to the sync status string displayed in the
status bar; during the main forward sync, the current slot is no longer
reported and always displays as `0`. This patch corrects the computation
to accurately report the current slot once more.
The `SyncManager` has a leftover optional `maxStatusAge` parameter in
its constructor that used to configure the libp2p `Status` polling rate.
This parameter was replaced with a constant in #1827 and is no longer
functional. This patch removes the `maxStatusAge` leftovers.
With these changes, we can backfill about 400-500 slots/sec, which means
a full backfill of mainnet takes about 2-3h.
However, the CPU is not saturated - neither in server nor in client
meaning that somewhere, there's an artificial inefficiency in the
communication - 16 parallel downloads *should* saturate the CPU.
One plasible cause would be "too many async event loop iterations" per
block request, which would introduce multiple "sleep-like" delays along
the way.
I can push the speed up to 800 slots/sec by increasing parallel
downloads even further, but going after the root cause of the slowness
would be better.
* avoid some unnecessary block copies
* double parallel requests
When node is restarted before backfill has started but after some blocks
have finalized with forward sync, we would not start the backfill.
* also clean up one last `SomeSome`
* Initial commit.
* Fix current test suite.
* Fix keymanager api test.
* Fix wss_sim.
* Add more keystore_management tests.
* Recover deleted isEmptyDir().
* Add `HttpHostUri` distinct type.
Move keymanager calls away from rest_beacon_calls to rest_keymanager_calls.
Add REST serialization of RemoteKeystore and Keystore object.
Add tests for Remote Keystore management API.
Add tests for Keystore management API (Add keystore).
Fix serialzation issues.
* Fix test to use HttpHostUri instead of Uri.
* Add links to specification in comments.
* Remove debugging echoes.
* harden and speed up block sync
The `GetBlockBy*` server implementation currently reads SSZ bytes from
database, deserializes them into a Nim object then serializes them right
back to SSZ - here, we eliminate the deser/ser steps and send the bytes
straight to the network. Unfortunately, the snappy recoding must still
be done because of differences in framing.
Also, the quota system makes one giant request for quota right before
sending all blocks - this means that a 1024 block request will be
"paused" for a long time, then all blocks will be sent at once causing a
spike in database reads which potentially will see the reading client
time out before any block is sent.
Finally, on the reading side we make several copies of blocks as they
travel through various queues - this was not noticeable before but
becomes a problem in two cases: bellatrix blocks are up to 10mb (instead
of .. 30-40kb) and when backfilling, we process a lot more of them a lot
faster.
* fix status comparisons for nodes syncing from genesis (#3327 was a bit
too hard)
* don't hit database at all for post-altair slots in GetBlock v1
requests
* deactivate Doppelganger Protection during genesis
* also don't actually flag supposed-doppelgangers (because they're before broadcastStartEpoch) on GENESIS_SLOT start
* update action tracker on dependent-root-changing reorg (instead of
epoch change)
* don't try to log duties while syncing - we're not tracking actions yet
* fix slot used for doppelganger loss detection
These use a separate flow, and were previously only registered from the
network
* don't log successes in totals mode (TMI)
* remove `attestation-sent` event which is unused
* Fix a resource leak introduced in https://github.com/status-im/nimbus-eth2/pull/3279
* Don't restart the Eth1 syncing proggress from scratch in case of
monitor failures during Eth2 syncing.
* Switch to the primary operator as soon as it is back online.
* Log the web3 credentials in fewer places
Other changes:
The 'web3 test' command has been enhanced to obtain and print more
data regarding the selected provider.
- Request metadata_v2 (altair) by default instead of the v1
- Change the metadata pinger to a 3 failure-then-kick, instead of being time based
- Update kicker scorer to take into account topics which we're not subscribed to, to be sure that we will be able to publish correctly
- Add some metrics to give "fanout" health (in the same spirit of mesh health)
Make `validator exit command` work both with `JSON-RPC` and `REST` APIs
Fix problem with specifying rest-url using `localhost`
Change back exit error messages in `state_transition_block`
The current counters set gauges etc to the value of the _last_ validator
to be processed - as the name of the feature implies, we should be using
sums instead.
* fix missing beacon state metrics on startup, pre-first-head-selection
* fix epoch metrics not being updated on cross-epoch reorg
* Store finalized block roots in database (3s startup)
When the chain has finalized a checkpoint, the history from that point
onwards becomes linear - this is exploited in `.era` files to allow
constant-time by-slot lookups.
In the database, we can do the same by storing finalized block roots in
a simple sparse table indexed by slot, bringing the two representations
closer to each other in terms of conceptual layout and performance.
Doing so has a number of interesting effects:
* mainnet startup time is improved 3-5x (3s on my laptop)
* the _first_ startup might take slightly longer as the new index is
being built - ~10s on the same laptop
* we no longer rely on the beacon block summaries to load the full dag -
this is a lot faster because we no longer have to look up each block by
parent root
* a collateral benefit is that we no longer need to load the full
summaries table into memory - we get the RSS benefits of #3164 without
the CPU hit.
Other random stuff:
* simplify forky block generics
* fix withManyWrites multiple evaluation
* fix validator key cache not being updated properly in chaindag
read-only mode
* drop pre-altair summaries from `kvstore`
* recreate missing summaries from altair+ blocks as well (in case
database has lost some to an involuntary restart)
* print database startup timings in chaindag load log
* avoid allocating superfluos state at startup
* use a recursive sql query to load the summaries of the unfinalized
blocks
Additional sanity checking of the status message exchanged during a
fresh connection:
* check that head and finalized make sense, slot-wise
* verify that finalized root lies on the canonical chain, when possible
* re-check these things for every status message during sync
* Harden handling of unviable forks
In our current handling of unviable forks, we allow peers to send us
blocks that come from a different fork - this is not necessarily an
error as it can happen naturally, but it does open up the client to a
case where the same unviable fork keeps getting requested - rather than
allowing this to happen, we'll now give these peers a small negative
score - if it keeps happening, we'll disconnect them.
* keep track of unviable forks in quarantine, to avoid filling it with
known junk
* collect peer scores in single module
* descore peers when they send unviable blocks during sync
* don't give score for duplicate blocks
* increase quarantine size to a level that allows finality to happen
under optimal conditions - this helps avoid downloading the same blocks
over and over in case of an unviable fork
* increase initial score for new peers to make room for one more failure
before disconnection
* log and score invalid/unviable blocks in requestmanager too
* avoid ChainDAG dependency in quarantine
* reject gossip blocks with unviable parent
* continue processing unviable sync blocks in order to build unviable
dag
* docs
* Update beacon_chain/consensus_object_pools/block_pools_types.nim
* add unviable queue test
* limit by-root requests to non-finalized blocks
Presently, we keep a mapping from block root to `BlockRef` in memory -
this has simplified reasoning about the dag, but is not sustainable with
the chain growing.
We can distinguish between two cases where by-root access is useful:
* unfinalized blocks - this is where the beacon chain is operating
generally, by validating incoming data as interesting for future fork
choice decisions - bounded by the length of the unfinalized period
* finalized blocks - historical access in the REST API etc - no bounds,
really
In this PR, we limit the by-root block index to the first use case:
finalized chain data can more efficiently be addressed by slot number.
Future work includes:
* limiting the `BlockRef` horizon in general - each instance is 40
bytes+overhead which adds up - this needs further refactoring to deal
with the tail vs state problem
* persisting the finalized slot-to-hash index - this one also keeps
growing unbounded (albeit slowly)
Anyway, this PR easily shaves ~128mb of memory usage at the time of
writing.
* No longer honor `BeaconBlocksByRoot` requests outside of the
non-finalized period - previously, Nimbus would generously return any
block through this libp2p request - per the spec, finalized blocks
should be fetched via `BeaconBlocksByRange` instead.
* return `Opt[BlockRef]` instead of `nil` when blocks can't be found -
this becomes a lot more common now and thus deserves more attention
* `dag.blocks` -> `dag.forkBlocks` - this index only carries unfinalized
blocks from now - `finalizedBlocks` covers the other `BlockRef`
instances
* in backfill, verify that the last backfilled block leads back to
genesis, or panic
* add backfill timings to log
* fix missing check that `BlockRef` block can be fetched with
`getForkedBlock` reliably
* shortcut doppelganger check when feature is not enabled
* in REST/JSON-RPC, fetch blocks without involving `BlockRef`
* fix dag.blocks ref
* initial support for minification and new interchange tests. Removal of v1 and v1 migration.
* Synthetic attestations: SQLite3 requires one statement/query per prepared statement
* Fix DB import interrupted if no attestation was found
* Skip test relying on undocumented test behavior (https://github.com/eth-clients/slashing-protection-interchange-tests/pull/12#issuecomment-1011158701)
* Skip test relying on unclear minification behavior:
creating an invalid minified attestation with source > target or setting target = max(source, target)
* remove DB v1 and update submodule
* Apply suggestions from code review
Co-authored-by: Jacek Sieka <jacek@status.im>
Co-authored-by: Jacek Sieka <jacek@status.im>
Backfilling is the process of downloading historical blocks via P2P that
are required to fulfill `GetBlocksByRange` duties - this happens during
both trusted node and finalized checkpoint syncs.
In particular, backfilling happens after syncing to head, such that
attestation work can start as soon as possible.
* Fix SyncQueue initialization procedure.
Remove usage of `awaitne`.
Add cancellation support.
Remove unneeded `sleepAsync()` if peer's head is older than needed.
Add `direction` field to all logs.
Fix syncmanager wedge issue.
Add proper resource cleaning procedure on backward sync finish.
Co-authored-by: cheatfate <eugene.kabanov@status.im>
The new format is based on compressed CSV files in two channels:
* Detailed per-epoch data
* Aggregated "daily" summaries
The use of append-only CSV file speeds up significantly the epoch
processing speed during data generation. The use of compression
results in smaller storage requirements overall. The use of the
aggregated files has a very minor cost in both CPU and storage,
but leads to near interactive speed for report generation.
Other changes:
- Implemented support for graceful shut downs to avoid corrupting
the saved files.
- Fixed a memory leak caused by lacking `StateCache` clean up on each
iteration.
- Addressed review comments
- Moved the rewards and penalties calculation code in a separate module
Required invasive changes to existing modules:
- The `data` field of the `KeyedBlockRef` type is made public to be used
by the validator rewards monitor's Chain DAG update procedure.
- The `getForkedBlock` procedure from the `blockchain_dag.nim` module
is made public to be used by the validator rewards monitor's Chain DAG
update procedure.
This is an alternative take on https://github.com/status-im/nimbus-eth2/pull/3107
that aims for more minimal interventions in the spec modules at the expense of
duplicating more of the spec logic in ncli_db.
Using the wrong type here causes requests to fail due to the overly
zealous parameter validation - the failure is harmless in the current
duty subscription model, but would have caused more serious failures
down the line.
* Trusted node sync
Trusted node sync, aka checkpoint sync, allows syncing tyhe chain from a
trusted node instead of relying on a full sync from genesis.
Features include:
* sync from any slot, including the latest finalized slot
* backfill blocks either from the REST api (default) or p2p (#3263)
Future improvements:
* top up blocks between head in database and some other node - this
makes for an efficient backup tool
* recreate historical state to enable historical queries
* fixes
* load genesis from network metadata
* check checkpoint block root against state
* fix invalid block root in rest json decoding
* odds and ends
* retry looking for epoch-boundary checkpoint blocks
When syncing, we show how much of the sync has completed - with
checkpoint sync, the syncing does not always go from slot 0 to head, but
rather can start in the middle.
To show a consistent `%` between restarts, we introduce the concept of a
pivot point, such that if I sync 10% of the chain, then restart the
client, it picks up at 10% (instead of counting from 0).
What it looks like:
```
INF ... sync="01d12h41m (15.96%) 13.5158slots/s (QDDQDDQQDP:339018)" ...
```
Time in the beacon chain is expressed relative to the genesis time -
this PR creates a `beacon_time` module that collects helpers and
utilities for dealing the time units - the new module does not deal with
actual wall time (that's remains in `beacon_clock`).
Collecting the time related stuff in one place makes it easier to find,
avoids some circular imports and allows more easily identifying the code
actually needs wall time to operate.
* move genesis-time-related functionality into `spec/beacon_time`
* avoid using `chronos.Duration` for time differences - it does not
support negative values (such as when something happens earlier than it
should)
* saturate conversions between `FAR_FUTURE_XXX`, so as to avoid
overflows
* fix delay reporting in validator client so it uses the expected
deadline of the slot, not "closest wall slot"
* simplify looping over the slots of an epoch
* `compute_start_slot_at_epoch` -> `start_slot`
* `compute_epoch_at_slot` -> `epoch`
A follow-up PR will (likely) introduce saturating arithmetic for the
time units - this is merely code moves, renames and fixing of small
bugs.
* Harden CommitteeIndex, SubnetId, SyncSubcommitteeIndex
Harden the use of `CommitteeIndex` et al to prevent future issues by
using a distinct type, then validating before use in several cases -
datatypes in spec are kept simple though so that invalid data still can
be read.
* fix invalid epoch used in REST
`/eth/v1/beacon/states/{state_id}/committees` committee length (could
return invalid data)
* normalize some variable names
* normalize committee index loops
* fix `RestAttesterDuty` to use `uint64` for `validator_committee_index`
* validate `CommitteeIndex` on ingress in REST API
* update rest rules with stricter parsing
* better REST serializers
* save lots of memory by not using `zip` ...at least a few bytes!
* REST cleanups
* reject out-of-range committee requests
* print all hex values as lower-case
* allow requesting state information by head state root
* turn `DomainType` into array (follow spec)
* `uint_to_bytesXX` -> `uint_to_bytes` (follow spec)
* fix wrong dependent root in `/eth/v1/validator/duties/proposer/`
* update documentation - `--subscribe-all-subnets` is no longer needed
when using the REST interface with validator clients
* more fixes
* common helpers for dependent block
* remove test rules obsoleted by more strict epoch tests
* fix trailing commas
* Update docs/the_nimbus_book/src/rest-api.md
* Update docs/the_nimbus_book/src/rest-api.md
Co-authored-by: sacha <sacha@status.im>
Overhaul of era files, including documentation and reference
implementations
* store blocks, then state, then slot indices for easy lookup at low
cost
* document era file rationale
* altair+ support in era writer
* support downloading blocks / states via JSON in addition to SSZ -
slow, but needed for infura support - SSZ is still used when server
supports it
* use common forked block/state reader in REST API
* fix stack overflows in REST JSON decoder
* fix invalid serialization of `justification_bits` in
`/eth/v1/debug/beacon/states` and `/eth/v2/debug/beacon/states`
* fix REST client to use `/eth/...` instead of `/api/eth/...`, update
"default" urls to expose REST api via `/eth` as well as this is what the
standard says - `/api` was added early on based on an example "base url"
in the spec that has been removed since
* expose Nimbus REST extensions via `/nimbus` in addition to
`/api/nimbus` to stay consistent with `/eth`
* fix invalid state root when reading states via REST
* fix recursive imports in `spec/ssz_codec`
* remove usages of `serialization.useCustomSerialization` - fickle
With checkpoint sync in particular, and state pruning in the future,
loading states or state-dependent data may fail. This PR adjusts the
code to allow this to be handled gracefully.
In particular, the new availability assumption is that states are always
available for the finalized checkpoint and newer, but may fail for
anything older.
The `tail` remains the point where state loading de-facto fails, meaning
that between the tail and the finalized checkpoint, we can still get
historical data (but code should be prepared to handle this as an
error).
However, to harden the code against long replays, several operations
which are assumed to work only with non-final data (such as gossip
verification and validator duties) now limit their search horizon to
post-finalized data.
* harden several state-dependent operations by logging an error instead
of introducing a panic when state loading fails
* `withState` -> `withUpdatedState` to differentiate from the other
`withState`
* `updateStateData` can now fail if no state is found in database - it
is also hardened against excessively long replays
* `getEpochRef` can now fail when replay fails
* reject blocks with invalid target root - they would be ignored
previously
* fix recursion bug in `isProposed`
* Fix REST some rest call signatures and implement a simple API benchmark tool
* Implement #3129 (Optimized history traversals in the REST API)
Other notable changes:
The `updateStateData` procedure in the `blockchain_dag.nim` module is
optimized to not rewind down to the last snapshot state saved in the
database if the supplied input state can be used as a starting point
instead.
* Disallow await in withStateForBlockSlot
* Tune getLowSubnets
* Also aim for dHigh peers in gossipsub
* Apply suggestions from code review
Co-authored-by: Jacek Sieka <jacek@status.im>
Co-authored-by: Jacek Sieka <jacek@status.im>
* log doppelganger detection when it activates and when it causes missed
duties
* less prominent eth1 sync progress
* log in-progress sync at notice only when actually missing duties
* better detail in replay log
* don't log finalization checkpoints - this is quite verbose when
syncing and already included in "Slot start"
* 3x speedup in snappy compression
oh, the wonders of `copyMem` in `endians2` - speeds up all kinds of
operations like database stores, sending gossip etc.
* endian usage fixes
* support GOSSIP_MAX_SIZE_MERGE-sized blocks; prevent fork choice clock stutter via aggregate attestations
* relay max gossip size to libp2p, use tight uncompressed bounds for fixed-size messages
* Update beacon_chain/networking/eth2_network.nim
Co-authored-by: Jacek Sieka <jacek@status.im>
* Update beacon_chain/networking/eth2_network.nim
Co-authored-by: Jacek Sieka <jacek@status.im>
Co-authored-by: Jacek Sieka <jacek@status.im>
With the right sequence of events (for example a REST request or a
validation), it can happen that the first traversal across a state
checkpoint boundary is done without storing that state on disk - this
causes problens when replaying states, because now states may be missing
from the database.
Here, we simply avoid using the caches when advancing a state that will
go into the database, ensuring that the information lost during caching
always is permanently stored.
* fix recursion bug in `isProposed`
A novel optimisation for attestation and sync committee message
validation: when batching, we look for signatures of the same message
and aggregate these before batch-validating: this results in up to 60%
fewer signature verifications on a busy server, leading to a significant
reduction in CPU usage.
* increase batch size slightly which helps finding more aggregates
* add metrics for batch verification efficiency
* use simple `blsVerify` when there is only one signature to verify in
the batch, avoiding the RNG
* use v1.1.6 test vectors; use BeaconTime instead of Slot in fork choice
* tick through every slot at least once
* use div INTERVALS_PER_SLOT and use precomputed constants of them
* use correct (even if numerically equal) constant
Introduced in #3171, it turns out we can just follow the block headers
to achieve the same effect
* leaves the constant in the code so as to avoid confusion when reading
database that had the constant written (such as the fleet nodes and
other unstable users)
Validator monitoring based on and mostly compatible with the
implementation in Lighthouse - tracks additional logs and metrics for
specified validators so as to stay on top on performance.
The implementation works more or less the following way:
* Validator pubkeys are singled out for monitoring - these can be
running on the node or not
* For every action that the validator takes, we record steps in the
process such as messages being seen on the network or published in the
API
* When the dust settles at the end of an epoch, we report the
information from one epoch before that, which coincides with the
balances being updated - this is a tradeoff between being correct
(waiting for finalization) and providing relevant information in a
timely manner)
* SyncManager cleanups for backfill support
Cleanups, fixes and simplifications, in anticipation of backfill support
for the `SyncManager`:
* reformat sync progress indicator to show time left and % done more
prominently:
* old: `sync="sPssPsssss:2:2.4229:00h57m (2706898)"`
* new: `sync="14d12h31m (0.52%) 1.1378slots/s (wQQQQQDDQQ:1287520)"`
* reset average speed when going out of sync
* pass all block errors to sync manager, including duplicate/unviable
* penalize peers for reporting a head block that is outside of our
expected wall clock time (they're likely on a different network or
trying to disrupt sync)
* remove `SyncFailureKind` (unused)
* remove `inRange` (unused)
* add `Q` for sync queue requests that are in the `SyncQueue` but not
yet in the `BlockProcessor` queue
* update last slot in `SyncQueue` after getting peer status
* fix race condition between `wakeupWaiters` and `resetWait`, where
workers would not be correctly reset if block verification returned a
completed future without event loop
* log syncmanager direction
* Fix ordering issue.
Some of the requests size of which are not equal to `chunkSize` could be processed in wrong order which could lead to sync process freezes.
Co-authored-by: cheatfate <eugene.kabanov@status.im>
PBKDF2 based keystore files are required to have `dklen >= 32`.
This patch ensures that keystores not fulfilling that requirement
are properly rejected.
In the ChainDAG, 3 block pointers are kept: genesis, tail and head. This
PR adds one more block pointer: the backfill block which represents the
block that has been backfilled so far.
When doing a checkpoint sync, a random block is given as starting point
- this is the tail block, and we require that the tail block has a
corresponding state.
When backfilling, we end up with blocks without corresponding states,
hence we cannot use `tail` as a backfill pointer - there is no state.
Nonetheless, we need to keep track of where we are in the backfill
process between restarts, such that we can answer GetBeaconBlocksByRange
requests.
This PR adds the basic support for backfill handling - it needs to be
integrated with backfill sync, and the REST API needs to be adjusted to
take advantage of the new backfilled blocks when responding to certain
requests.
Future work will also enable moving the tail in either direction:
* pruning means moving the tail forward in time and removing states
* backwards means recreating past states from genesis, such that
intermediate states are recreated step by step all the way to the tail -
at that point, tail, genesis and backfill will match up.
* backfilling is done when backfill != genesis - later, this will be the
WSS checkpoint instead
There are multiple copies of `bitseqs` (`nim-stew`, `nim-eth`, and
`nim-ssz-serialization`). To avoid confusion, this patch removes the
final remaining reference of a non-`nim-ssz-serialization` copy.
Makes `readSszForkedTrustedSignedBeaconBlock` consistent with
`readSszForkedHashedBeaconState`, adjusting the length check
to verify the same type that is used for length computation,
and using the same formatting.
* BlockId reform
Introduce `BlockId` that helps track a root/slot pair - this prepares
the codebase for backfilling and handling out-of-dag blocks
* move block dag code to separate module
* fix finalised state root in REST event stream
* fix finalised head computation on head update, when starting from
checkpoint
* clean up chaindag init
* revert `epochAncestor` change in introduced in #3144 that would return
an epoch ancestor from the canoncial history instead of the given
history, causing `EpochRef` keys to point to the wrong block
* batch-verify sync messages for a small perf boost
Generally reuses the same structure as attestation and aggregate
verification
* normalize `signatures` and `signature_batch` to use the same pattern
of verification
* normalize parameter names, order etc for signature stuff in general
* avoid calling `blsSign` directly - instead, go through `signatures`
consistently
This removes some dead code from `getSubcommitteePositionsAux` which is
no longer needed since the introduction of `SyncCommitteeCache`.
This also cleans up some formatting, uses `let` instead of `var` where
possible, and uses implicit `pairs` in one case for consistency.
* Introduce slot->BlockRef mapping for finalized chain
The finalized chain is linear, thus we can use a seq to lookup blocks by
slot number.
Here, we introduce such a seq, even though in the future, it should
likely be backed by a database structure instead, or, more likely, a
flat era file with a flat lookup index.
This dramatically speeds up requests by slot, such as those coming from
the REST interface or GetBlocksByRange, as these are currently served by
a linear iteration from head.
* fix REST block requests to not return blocks from an earlier slot when
the given slot is empty
* fix StateId interpretation such that it doesn't treat state roots as
block roots
* don't load full block from database just to return its root
This PR fixes two issues with block publishing:
* Gossip-valid blocks are published before integrating them into the
chain, giving broadcasting a head start, both for rest block and
* Outright invalid blocks from the API that could lead to the descoring
of the node are no longer broadcast
Bonus:
* remove undocumented and duplicated `post_v1_validator_block` JSON-RPC
call
* move quarantine outside of chaindag
The quarantine has been part of the ChainDAG for the longest time, but
this design has a few issues:
* the function in which blocks are verified and added to the dag becomes
reentrant and therefore difficult to reason about - we're currently
using a stateful flag to work around it
* quarantined blocks bypass the processing queue leading to a processing
stampede
* the quarantine flow is unsuitable for orphaned attestations - these
should also should be quarantined eventually
Instead of processing the quarantine inside ChainDAG, this PR moves
re-queueing to `block_processor` which already is responsible for
dealing with follow-up work when a block is added to the dag
This sets the stage for keeping attestations in the quarantine as well.
Also:
* make `BlockError` `{.pure.}`
* avoid use of `ValidationResult` in block clearance (that's for gossip)
* Add some indicators to help fixing issue.
* Bump presto to help debugging.
* Fix compilation problems in presto.
* Fix SIGSEGV.
* Bump latest changes in chronos and presto.
Fix rare cases in validator_client.
* Use proper commits for chronos and presto.