* Block header download starting at Beacon down to Era1
details:
The header download implementation is intended to be completed to a
full sync facility.
Downloaded block headers are stored in a `CoreDb` table. Later on they
should be fetched, complemented by a block body, executed/imported,
and deleted from the table.
The Era1 repository may be partial or missing. Era1 headers are neither
downloaded nor stored on the `CoreDb` table.
Headers are downloaded top down (largest block number first) using the
hash of the block header by one peer. Other peers fetch headers
opportunistically using block numbers
Observed download times for 14m `MainNet` headers varies between 30min
and 1h (Era1 size truncated to 66m blocks.), full download 52min
(anectdotal.) The number of peers downloading concurrently is crucial
here.
* Activate `flare` by command line option
* Fix copyright year
Saving both memory and processing, we can move entries from one
savepoint to another, specially when the target is empty as it often is
during transaction processing
This avoid restarting the node always with a full radius, which
causes the node the be bombarded with offers which it later has
to delete anyhow.
In order to implement this functionality, several changes were
made as the radius needed to move from the Portal wire protocol
current location to the contentDB and beaconDB, which is
conceptually more correct anyhow.
So radius is now part of the database objects and a handler is
used in the portal wire protocol to access its value.
* replace rocksdb row cache with larger rdb lru caches - these serve the
same purpose but are more efficient because they skips serialization,
locking and rocksdb layering
* don't append fresh items to cache - this has the effect of evicting
the existing items and replacing them with low-value entries that might
never be read - during write-heavy periods of processing, the
newly-added entries were evicted during the store loop
* allow tuning rdb lru size at runtime
* add (hidden) option to print lru stats at exit (replacing the
compile-time flag)
pre:
```
INF 2024-09-03 15:07:01.136+02:00 Imported blocks
blockNumber=20012001 blocks=12000 importedSlot=9216851 txs=1837042
mgas=181911.265 bps=11.675 tps=1870.397 mgps=176.819 avgBps=10.288
avgTps=1574.889 avgMGps=155.952 elapsed=19m26s458ms
```
post:
```
INF 2024-09-03 13:54:26.730+02:00 Imported blocks
blockNumber=20012001 blocks=12000 importedSlot=9216851 txs=1837042
mgas=181911.265 bps=11.637 tps=1864.384 mgps=176.250 avgBps=11.202
avgTps=1714.920 avgMGps=169.818 elapsed=17m51s211ms
```
9%:ish import perf improvement on similar mem usage :)
* Cosmetics, spelling, etc.
* Aristo: make sure that a save cycle always commits even when empty
why:
If `Kvt` is tied to the `Aristo` DB save cycle, then this save cycle
must also be committed if there is no data to save for `Aristo`.
Otherwise this will lead to excessive core memory use with some fringe
condition where Eth headers (or blocks) are downloaded while syncing
and not really stored on disk.
* CoreDb: Correct persistent save mode
why:
Saving `Kvt` first is seen as a harbinger (or canary) for `Aristo` as
both run in sync. If `Kvt` succeeds saving first, so must be `Aristo`
next. Other than this is a defect.
* Wiring ForkedChainRef to other components
- Disable majority of hive simulators
- Only enable pyspec_sim for the moment
- The pyspec_sim is using a smaller RPC service wired to ForkedChainRef
- The RPC service will gradually grow
* Addressing PR review
* Fix test_beacon/setup_env
* Enable consensus_sim (#2441)
* Enable consensus_sim
* Remove isFile check
* Enable Engine API jwt auth tests and exchange cap tests
* Enable engine api in build_sim.sh
* Wire ForkedChainRef to Engine API newPayload
* Wire Engine API getBodies to ForkedChainRef
* Wire Engine API api_forkchoice to ForkedChainRef
* Wire more RPC methods to ForkedChainRef
* Implement eth_syncing
* Implement eth_call and eth_getlogs
* TxPool: simplify smartHead
* Fix smartHead usage
* Fix txpool headDiff
* Remove hasBlockHeader and use headerExists
* Addressing review
This is a first step towards measuring the efficiency of the LRU caches
over time - metrics can be collected during import or when running
regulary.
Since `nim-metrics` carries some overhead for its default way of
reporting metrics, this PR implements a custom collector over atomic
counters, given that this is one of the hottest spots in the block
processing pipeline.
Using a compile-time flag, the same metrics can be printed on exit which
is useful when comparing different strategies for caching - here's a
recent run over blocks 16000001-1616384 - this is a good candidate to
expose in a better way in the future, maybe:
```
state vtype miss hit total hitrate
Account Leaf 4909417 4466215 9375632 47.64%
Account Branch 20742574 72015123 92757697 77.64%
World Leaf 940483 1140946 2081429 54.82%
World Branch 8224151 131496580 139720731 94.11%
all all 34816625 209118864 243935489 85.73%
```
* pre-allocate `blobify` data and remove redundant error handling
(cannot fail on correct data)
* use threadvar for temporary storage when decoding rdb, avoiding
closure env
* speed up database walkers by avoiding many temporaries
~5% perf improvement on block import, 100x on database iteration (useful
for building analysis tooling)
Tested up to block ~14m, zstd uses ~12% less space which seems to result
in a small:ish (2-4%) performance improvement on block import speed -
this seems like a better baseline for more extensive testing in the
future.
Pre: 57383308 kb
Post: 50831236 kb
* bump metrics
* Remove cruft
* Cosmetics, update some logging, noise control
* Renamed `CoreDb` function `hasKey` => `hasKeyRc` and provided `hasKey`
why:
Currently, `hasKey` returns a `Result[]` rather than a `bool` which
is what one would expect from a function prototype of this name.
This was a bit of an annoyance and cost unnecessary attention.
* Return default values when account, slot or code doesn't exist.
* Handle case when storage doesn't exist due to account not existing or being a non contract account.
In the current VM opcode dispatcher, a two-level case statement is
generated that first matches the opcode and then uses another nested
case statement to select the actual implementation based on which fork
it is, causing the dispatcher to grow by `O(opcodes) * O(forks)`.
The fork does not change between instructions causing significant
inefficiency for this approach - not only because it repeats the fork
lookup but also because of code size bloat and missed optimizations.
A second source of inefficiency in dispatching is the tracer code which
in the vast majority of cases is disabled but nevertheless sees multiple
conditionals being evaluated for each instruction only to remain
disabled throughout exeuction.
This PR rewrites the opcode dispatcher macro to generate a separate
dispatcher for each fork and tracer setting and goes on to pick the
right one at the start of the computation.
This has many advantages:
* much smaller dispatcher
* easier to compile
* better inlining
* fewer pointlessly repeated instruction
* simplified macro (!)
* slow "low-compiler-memory" dispatcher code can be removed
Net block import improvement at about 4-6% depending on the contract -
synthetic EVM benchmnarks would show an even better result most likely.
Because EthBlock is quite large, the stack usage that results from the
multiple copies (temporary and not) present in the import command is
larger than it should be - this PR moves some of that data to a closure
environment allocated once per EthBlock - a larger restructuring of the
code is due but in the meantime, this simple change speeds up garbage
collection a little bit.
* Remove redundant `eth/68` message and clean up docu
details:
There is only eth/68 available at the moment
* Allow to turn on chronicles line number logging in `Makefile`
* Accept (and forget) tx hashes announcements
why:
Does no harm to just ignore it at the moment
* Bump nim-eth (rlp fix)
When the stack has an empty layer on top, there's no need to copy the
contents of `top` to it since it would be the same.
~13% processing saved (!)
pre
```
INF 2024-08-17 19:11:31.748+02:00 Imported blocks
blockNumber=18667648 blocks=12000 importedSlot=7860043 txs=1797812
mgas=181135.177 bps=8.763 tps=1375.062 mgps=132.125 avgBps=6.798
avgTps=1018.501 avgMGps=102.617 elapsed=29m25s154ms
```
post
```
INF 2024-08-17 18:22:52.513+02:00 Imported blocks
blockNumber=18667648 blocks=12000 importedSlot=7860043 txs=1797812
mgas=181135.177 bps=9.648 tps=1513.961 mgps=145.472 avgBps=7.876
avgTps=1179.998 avgMGps=118.888 elapsed=25m23s572ms
```
The reverse slot hash mechanism causes quite a bit of database traffic
but is broadly not useful except for iterating the storage of an
account, something that a validator never does (it's used by the
tracers).
This flag adds one more thing that is not stored in the database, to be
explored more comprehensively when designing full, validator and archive
modes with different pruning options in the future.
`ldb` says this is 60gb of data (!):
```
ldb --db=. --ignore_unknown_options --column_family=KvtGen approxsize
--hex --from=0x05
--to=0x05ffffffffffffffffffffffffffffffffffffffffffffff
66488353954
```
* Move snap un-dumpers to aristo unit test folder
why:
The only place where it is used, now to test the database against
legacy snap sync dump samples.
While the details of the dumped data have mostly outlived their purpuse,
its use as **entropy** data thrown against `Aristo` has still been
useful to find/debug tricky DB problems.
* Remove cruft
* `nimbus-eth1-blobs` not used anymore as test data source
* Cleaning up, removing cruft and debugging statements
* Make `aristo_delta` fluffy compatible
why:
A sub-module that uses `chronicles` must import all possible
modules used by a parent module that imports the sub-module.
* update TODO
* Extract sub-tree deletion functions into separate sub-modules
* Move/rename `aristo_desc.accLruSize` => `aristo_constants.ACC_LRU_SIZE`
* Lazily delete sub-trees
why:
This gives some control of the memory used to keep the deleted vertices
in the cached layers. For larger sub-trees, keys and vertices might be
on the persistent backend to a large extend. This would pull an amount
of extra information from the backend into the cached layer.
For lazy deleting it is enough to remember sub-trees by a small set of
(at most 16) sub-roots to be processed when storing persistent data.
Marking the tree root deleted immediately allows to let most of the code
base work as before.
* Comments and cosmetics
* No need to import all for `Aristo` here
* Kludge to make `chronicle` usage in sub-modules work with `fluffy`
why:
That `fluffy` would not run with any logging in `core_deb` is a problem
I have known for a while. Up to now, logging was only used for debugging.
With the current `Aristo` PR, there are cases where logging might be
wanted but this works only if `chronicles` runs without the
`json[dynamic]` sinks.
So this should be re-visited.
* More of a kludge
why:
It is not safe in general to recycle vertex IDs while the `RocksDb`
cache has `VertexID` rather than `RootedVertexID` where the former
type seems preferable.
In some fringe cases one might remove a vertex with key `(root1,vid)`
and insert another vertex with key `(root2,vid)` while re-using the
vertex ID `vid`. Without knowledge of `root1` and `root2`, the LRU
cache will return the same vertex for `(root2,vid)` also for
`(root1,vid)`.
Based on some simple testing done with a few combinations of cache
sizes, it seems that the block cache has grown in importance compared to
the where we were before changing on-disk format and adding a lot of
other point caches.
With these settings, there's roughly a 15% performance increase when
processing blocks in the 18M range over the status quo while memory
usage decreases by more than 1gb!
Only a few values were tested so there's certainly more to do here but
this change sets up a better baseline for any future optimizations.
In particular, since the initial defaults were chosen root vertex id:s
were introduced as key prefixes meaning that storage for each account
will be grouped together and thus it becomes more likely that a block
loaded from disk will be hit multiple times - this seems to give the
block cache an edge over the row cache, specially when traversing the
storage trie.