11 KiB
Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data
Notice: This document is a work-in-progress for researchers and implementers.
Table of contents
- Ethereum 2.0 Phase 1 -- Shard Data Chains
- Table of contents
- Introduction
- Configuration
- Containers
- Helpers
- Beacon Chain Changes
- New state variables
- New block data structures
- Attestation processing
- [Light client signature processing)(#light-client-signature-processing)
- Epoch transition
- Fraud proofs
- Honest persistent committee member behavior
Introduction
This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.
Configuration
Misc
Name | Value | Unit | Duration |
---|---|---|---|
MAX_SHARDS |
2**10 (= 1024) |
||
ACTIVE_SHARDS |
2**6 (= 64) |
||
SHARD_ROOT_HISTORY_LENGTH |
2**15 (= 32,768) |
||
MAX_CATCHUP_RATIO |
2**2 (= 4) |
||
ONLINE_PERIOD |
2**3 (= 8) |
epochs | ~51 min |
LIGHT_CLIENT_COMMITTEE_SIZE |
2**7 (= 128) |
||
LIGHT_CLIENT_COMMITTEE_PERIOD |
2**8 (= 256) |
epochs | ~29 hours |
Containers
AttestationData
class AttestationData(Container):
# Slot
slot: Slot
# LMD GHOST vote
beacon_block_root: Hash
# FFG vote
source: Checkpoint
target: Checkpoint
# Shard data roots
shard_data_roots: List[Hash, MAX_CATCHUP_RATIO * MAX_SHARDS]
# Intermediate state roots
shard_state_roots: List[Hash, MAX_CATCHUP_RATIO * MAX_SHARDS]
# Index
index: uint64
Attestation
class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
custody_bits: List[Bitlist[MAX_VALIDATORS_PER_COMMITTEE], MAX_CATCHUP_RATIO * MAX_SHARDS]
signature: BLSSignature
CompactCommittee
class CompactCommittee(Container):
pubkeys: List[BLSPubkey, MAX_VALIDATORS_PER_COMMITTEE]
compact_validators: List[uint64, MAX_VALIDATORS_PER_COMMITTEE]
Helpers
get_online_validators
def get_online_indices(state: BeaconState) -> Set[ValidatorIndex]:
active_validators = get_active_validator_indices(state, get_current_epoch(state))
return set([i for i in active_validators if state.online_countdown[i] != 0])
get_shard_state_root
def get_shard_state_root(state: BeaconState, shard: Shard) -> Hash:
return state.shard_state_roots[shard][-1]
pack_compact_validator
def pack_compact_validator(index: int, slashed: bool, balance_in_increments: int) -> int:
"""
Creates a compact validator object representing index, slashed status, and compressed balance.
Takes as input balance-in-increments (// EFFECTIVE_BALANCE_INCREMENT) to preserve symmetry with
the unpacking function.
"""
return (index << 16) + (slashed << 15) + balance_in_increments
unpack_compact_validator
def unpack_compact_validator(compact_validator: int) -> Tuple[int, bool, int]:
"""
Returns validator index, slashed, balance // EFFECTIVE_BALANCE_INCREMENT
"""
return compact_validator >> 16, bool((compact_validator >> 15) % 2), compact_validator & (2**15 - 1)
committee_to_compact_committee
def committee_to_compact_committee(state: BeaconState, committee: Sequence[ValidatorIndex]) -> CompactCommittee:
"""
Given a state and a list of validator indices, outputs the CompactCommittee representing them.
"""
validators = [state.validators[i] for i in committee]
compact_validators = [
pack_compact_validator(i, v.slashed, v.effective_balance // EFFECTIVE_BALANCE_INCREMENT)
for i, v in zip(committee, validators)
]
pubkeys = [v.pubkey for v in validators]
return CompactCommittee(pubkeys=pubkeys, compact_validators=compact_validators)
Beacon Chain Changes
New state variables
shard_state_roots: Vector[List[Hash, MAX_CATCHUP_RATIO * MAX_SHARDS], MAX_SHARDS]
shard_next_slot: Vector[Slot, MAX_SHARDS]
online_countdown: Bytes[VALIDATOR_REGISTRY_LIMIT]
current_light_committee: CompactCommittee
next_light_committee: CompactCommittee
New block data structures
light_client_signature_bitfield: Bitlist[LIGHT_CLIENT_COMMITTEE_SIZE]
light_client_signature: BLSSignature
Attestation processing
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
data = attestation.data
assert data.index < ACTIVE_SHARDS
shard = (data.index + get_start_shard(state, data.slot)) % ACTIVE_SHARDS
# Signature check
committee = get_crosslink_committee(state, get_current_epoch(state), shard)
for bits in attestation.custody_bits + [attestation.aggregation_bits]:
assert bits == len(committee)
# Check signature
assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
# Get attesting indices
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits)
# Type 1: on-time attestations
if data.custody_bits != []:
# Correct start slot
assert data.slot == state.shard_next_slot[shard]
# Correct data root count
max_catchup = ACTIVE_SHARDS * MAX_CATCHUP_RATIO // get_committee_count(state, state.slot)
assert len(data.shard_data_roots) == len(attestation.custody_bits) == len(data.shard_state_roots) == min(state.slot - data.slot, max_catchup)
# Correct parent block root
assert data.beacon_block_root == get_block_root_at_slot(state, state.slot - 1)
# Apply
online_indices = get_online_indices(state)
if get_total_balance(state, online_indices.intersection(attesting_indices)) * 3 >= get_total_balance(state, online_indices) * 2:
state.shard_state_roots[shard] = data.shard_state_roots
state.shard_next_slot[shard] += len(data.shard_data_roots)
# Type 2: delayed attestations
else:
assert slot_to_epoch(data.slot) in (get_current_epoch(state), get_previous_epoch(state))
assert len(data.shard_data_roots) == len(data.intermediate_state_roots) == 0
for index in attesting_indices:
online_countdown[index] = ONLINE_PERIOD
pending_attestation = PendingAttestation(
slot=data.slot,
shard=shard,
aggregation_bits=attestation.aggregation_bits,
inclusion_delay=state.slot - attestation_slot,
proposer_index=get_beacon_proposer_index(state),
)
if data.target.epoch == get_current_epoch(state):
assert data.source == state.current_justified_checkpoint
state.current_epoch_attestations.append(pending_attestation)
else:
assert data.source == state.previous_justified_checkpoint
state.previous_epoch_attestations.append(pending_attestation)
Check the length of attestations using len(block.attestations) <= 4 * get_committee_count(state, state.slot)
.
Light client processing
signer_validators = []
signer_keys = []
for i, bit in enumerate(block.light_client_signature_bitfield):
if bit:
signer_keys.append(state.current_light_committee.pubkeys[i])
index, _, _ = unpack_compact_validator(state.current_light_committee.compact_validators[i])
signer_validators.append(index)
assert bls_verify(
pubkey=bls_aggregate_pubkeys(signer_keys),
message_hash=get_block_root_at_slot(state, state.slot - 1),
signature=block.light_client_signature,
domain=DOMAIN_LIGHT_CLIENT
)
Epoch transition
# Slowly remove validators from the "online" set if they do not show up
for index in range(len(state.validators)):
if state.online_countdown[index] != 0:
state.online_countdown[index] = state.online_countdown[index] - 1
# Update light client committees
if get_current_epoch(state) % LIGHT_CLIENT_COMMITTEE_PERIOD == 0:
state.current_light_committee = state.next_light_committee
seed = get_seed(state, get_current_epoch(state), DOMAIN_LIGHT_CLIENT)
active_indices = get_active_validator_indices(state, get_current_epoch(state))
committee = [active_indices[compute_shuffled_index(ValidatorIndex(i), len(active_indices), seed)] for i in range(LIGHT_CLIENT_COMMITTEE_SIZE)]
state.next_light_committee = committee_to_compact_committee(state, committee)
Fraud proofs
TODO. The intent is to have a single universal fraud proof type, which contains (i) an on-time attestation on shard s
signing a set of data_roots
, (ii) an index i
of a particular data root to focus on, (iii) the full contents of the i'th data, (iii) a Merkle proof to the shard_state_roots
in the parent block the attestation is referencing, and which then verifies that one of the two conditions is false:
custody_bits[i][j] != generate_custody_bit(subkey, block_contents)
for anyj
execute_state_transition(slot, shard, attestation.shard_state_roots[i-1], parent.shard_state_roots, block_contents) != shard_state_roots[i]
(ifi=0
then instead useparent.shard_state_roots[s][-1]
)
For phase 1, we will use a simple state transition function:
- Check that
data[:32] == prev_state_root
- Check that
bls_verify(get_shard_proposer(state, slot, shard), hash_tree_root(data[-96:]), BLSSignature(data[-96:]), BLOCK_SIGNATURE_DOMAIN)
- Output the new state root:
hash_tree_root(prev_state_root, other_prev_state_roots, data)
Honest persistent committee member behavior
Suppose you are a persistent committee member on shard i
at slot s
. Suppose state.shard_next_slots[i] = s-1
("the happy case"). In this case, you look for a valid proposal that satisfies the checks in the state transition function above, and if you see such a proposal data
with post-state post_state
, make an attestation with shard_data_roots = [hash_tree_root(data)]
and shard_state_roots = [post_state]
. If you do not find such a proposal, make an attestation using the "default empty proposal", data = prev_state_root + b'\x00' * 96
.
Now suppose state.shard_next_slots[i] = s-k
for k>1
. Then, initialize data = []
, states = []
, state = state.shard_state_roots[i]
. For slot in (state.shard_next_slot, min(state.shard_next_slot + max_catchup, s))
, do:
- Look for all valid proposals for
slot
whose first 32 bytes equal tostate
. If there are none, add a default empty proposal todata
. If there is one such proposalp
, addp
todata
. If there is more than one, select the one with the largest number of total attestations supporting it or its descendants, and add it todata
. - Set
state
to the state after processing the proposal just added todata
; append it tostates
Make an attestation using shard_data_roots = data
and shard_state_roots = states
.