592 lines
21 KiB
Markdown
592 lines
21 KiB
Markdown
# Deneb -- Polynomial Commitments
|
|
|
|
## Table of contents
|
|
|
|
<!-- TOC -->
|
|
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
|
|
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
|
|
|
|
- [Introduction](#introduction)
|
|
- [Custom types](#custom-types)
|
|
- [Constants](#constants)
|
|
- [Preset](#preset)
|
|
- [Blob](#blob)
|
|
- [Crypto](#crypto)
|
|
- [Trusted setup](#trusted-setup)
|
|
- [Helper functions](#helper-functions)
|
|
- [Bit-reversal permutation](#bit-reversal-permutation)
|
|
- [`is_power_of_two`](#is_power_of_two)
|
|
- [`reverse_bits`](#reverse_bits)
|
|
- [`bit_reversal_permutation`](#bit_reversal_permutation)
|
|
- [BLS12-381 helpers](#bls12-381-helpers)
|
|
- [`hash_to_bls_field`](#hash_to_bls_field)
|
|
- [`bytes_to_bls_field`](#bytes_to_bls_field)
|
|
- [`validate_kzg_g1`](#validate_kzg_g1)
|
|
- [`bytes_to_kzg_commitment`](#bytes_to_kzg_commitment)
|
|
- [`bytes_to_kzg_proof`](#bytes_to_kzg_proof)
|
|
- [`blob_to_polynomial`](#blob_to_polynomial)
|
|
- [`compute_challenge`](#compute_challenge)
|
|
- [`bls_modular_inverse`](#bls_modular_inverse)
|
|
- [`div`](#div)
|
|
- [`g1_lincomb`](#g1_lincomb)
|
|
- [`compute_powers`](#compute_powers)
|
|
- [Polynomials](#polynomials)
|
|
- [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form)
|
|
- [KZG](#kzg)
|
|
- [`blob_to_kzg_commitment`](#blob_to_kzg_commitment)
|
|
- [`verify_kzg_proof`](#verify_kzg_proof)
|
|
- [`verify_kzg_proof_impl`](#verify_kzg_proof_impl)
|
|
- [`verify_kzg_proof_batch`](#verify_kzg_proof_batch)
|
|
- [`compute_kzg_proof`](#compute_kzg_proof)
|
|
- [`compute_quotient_eval_within_domain`](#compute_quotient_eval_within_domain)
|
|
- [`compute_kzg_proof_impl`](#compute_kzg_proof_impl)
|
|
- [`compute_blob_kzg_proof`](#compute_blob_kzg_proof)
|
|
- [`verify_blob_kzg_proof`](#verify_blob_kzg_proof)
|
|
- [`verify_blob_kzg_proof_batch`](#verify_blob_kzg_proof_batch)
|
|
|
|
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
|
|
<!-- /TOC -->
|
|
|
|
## Introduction
|
|
|
|
This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the Deneb specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations.
|
|
|
|
Functions flagged as "Public method" MUST be provided by the underlying KZG library as public functions. All other functions are private functions used internally by the KZG library.
|
|
|
|
Public functions MUST accept raw bytes as input and perform the required cryptographic normalization before invoking any internal functions.
|
|
|
|
## Custom types
|
|
|
|
| Name | SSZ equivalent | Description |
|
|
| - | - | - |
|
|
| `G1Point` | `Bytes48` | |
|
|
| `G2Point` | `Bytes96` | |
|
|
| `BLSFieldElement` | `uint256` | Validation: `x < BLS_MODULUS` |
|
|
| `KZGCommitment` | `Bytes48` | Validation: Perform [BLS standard's](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.5) "KeyValidate" check but do allow the identity point |
|
|
| `KZGProof` | `Bytes48` | Same as for `KZGCommitment` |
|
|
| `Polynomial` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | A polynomial in evaluation form |
|
|
| `Blob` | `ByteVector[BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB]` | A basic data blob |
|
|
|
|
## Constants
|
|
|
|
| Name | Value | Notes |
|
|
| - | - | - |
|
|
| `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` | Scalar field modulus of BLS12-381 |
|
|
| `BYTES_PER_COMMITMENT` | `uint64(48)` | The number of bytes in a KZG commitment |
|
|
| `BYTES_PER_PROOF` | `uint64(48)` | The number of bytes in a KZG proof |
|
|
| `BYTES_PER_FIELD_ELEMENT` | `uint64(32)` | Bytes used to encode a BLS scalar field element |
|
|
| `BYTES_PER_BLOB` | `uint64(BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB)` | The number of bytes in a blob |
|
|
| `G1_POINT_AT_INFINITY` | `Bytes48(b'\xc0' + b'\x00' * 47)` | Serialized form of the point at infinity on the G1 group |
|
|
| `KZG_ENDIANNESS` | `'big'` | The endianess of the field elements including blobs |
|
|
|
|
|
|
## Preset
|
|
|
|
### Blob
|
|
|
|
| Name | Value |
|
|
| - | - |
|
|
| `FIELD_ELEMENTS_PER_BLOB` | `uint64(4096)` |
|
|
| `FIAT_SHAMIR_PROTOCOL_DOMAIN` | `b'FSBLOBVERIFY_V1_'` |
|
|
| `RANDOM_CHALLENGE_KZG_BATCH_DOMAIN` | `b'RCKZGBATCH___V1_'` |
|
|
|
|
### Crypto
|
|
|
|
| Name | Value | Notes |
|
|
| - | - | - |
|
|
| `ROOTS_OF_UNITY` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | Roots of unity of order FIELD_ELEMENTS_PER_BLOB over the BLS12-381 field |
|
|
|
|
### Trusted setup
|
|
|
|
The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used,
|
|
but reusing the `mainnet` settings in public networks is a critical security requirement.
|
|
|
|
| Name | Value |
|
|
| - | - |
|
|
| `KZG_SETUP_G2_LENGTH` | `65` |
|
|
| `KZG_SETUP_G1` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
|
|
| `KZG_SETUP_G2` | `Vector[G2Point, KZG_SETUP_G2_LENGTH]`, contents TBD |
|
|
| `KZG_SETUP_LAGRANGE` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
|
|
|
|
## Helper functions
|
|
|
|
### Bit-reversal permutation
|
|
|
|
All polynomials (which are always given in Lagrange form) should be interpreted as being in
|
|
bit-reversal permutation. In practice, clients can implement this by storing the lists
|
|
`KZG_SETUP_LAGRANGE` and `ROOTS_OF_UNITY` in bit-reversal permutation, so these functions only
|
|
have to be called once at startup.
|
|
|
|
#### `is_power_of_two`
|
|
|
|
```python
|
|
def is_power_of_two(value: int) -> bool:
|
|
"""
|
|
Check if ``value`` is a power of two integer.
|
|
"""
|
|
return (value > 0) and (value & (value - 1) == 0)
|
|
```
|
|
|
|
#### `reverse_bits`
|
|
|
|
```python
|
|
def reverse_bits(n: int, order: int) -> int:
|
|
"""
|
|
Reverse the bit order of an integer ``n``.
|
|
"""
|
|
assert is_power_of_two(order)
|
|
# Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order
|
|
return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2)
|
|
```
|
|
|
|
#### `bit_reversal_permutation`
|
|
|
|
```python
|
|
def bit_reversal_permutation(sequence: Sequence[T]) -> Sequence[T]:
|
|
"""
|
|
Return a copy with bit-reversed permutation. The permutation is an involution (inverts itself).
|
|
|
|
The input and output are a sequence of generic type ``T`` objects.
|
|
"""
|
|
return [sequence[reverse_bits(i, len(sequence))] for i in range(len(sequence))]
|
|
```
|
|
|
|
### BLS12-381 helpers
|
|
|
|
#### `hash_to_bls_field`
|
|
|
|
```python
|
|
def hash_to_bls_field(data: bytes) -> BLSFieldElement:
|
|
"""
|
|
Hash ``data`` and convert the output to a BLS scalar field element.
|
|
The output is not uniform over the BLS field.
|
|
"""
|
|
hashed_data = hash(data)
|
|
return BLSFieldElement(int.from_bytes(hashed_data, KZG_ENDIANNESS) % BLS_MODULUS)
|
|
```
|
|
|
|
#### `bytes_to_bls_field`
|
|
|
|
```python
|
|
def bytes_to_bls_field(b: Bytes32) -> BLSFieldElement:
|
|
"""
|
|
Convert untrusted bytes to a trusted and validated BLS scalar field element.
|
|
This function does not accept inputs greater than the BLS modulus.
|
|
"""
|
|
field_element = int.from_bytes(b, KZG_ENDIANNESS)
|
|
assert field_element < BLS_MODULUS
|
|
return BLSFieldElement(field_element)
|
|
```
|
|
|
|
|
|
#### `validate_kzg_g1`
|
|
|
|
```python
|
|
def validate_kzg_g1(b: Bytes48) -> None:
|
|
"""
|
|
Perform BLS validation required by the types `KZGProof` and `KZGCommitment`.
|
|
"""
|
|
if b == G1_POINT_AT_INFINITY:
|
|
return
|
|
|
|
assert bls.KeyValidate(b)
|
|
```
|
|
|
|
#### `bytes_to_kzg_commitment`
|
|
|
|
```python
|
|
def bytes_to_kzg_commitment(b: Bytes48) -> KZGCommitment:
|
|
"""
|
|
Convert untrusted bytes into a trusted and validated KZGCommitment.
|
|
"""
|
|
validate_kzg_g1(b)
|
|
return KZGCommitment(b)
|
|
```
|
|
|
|
#### `bytes_to_kzg_proof`
|
|
|
|
```python
|
|
def bytes_to_kzg_proof(b: Bytes48) -> KZGProof:
|
|
"""
|
|
Convert untrusted bytes into a trusted and validated KZGProof.
|
|
"""
|
|
validate_kzg_g1(b)
|
|
return KZGProof(b)
|
|
```
|
|
|
|
#### `blob_to_polynomial`
|
|
|
|
```python
|
|
def blob_to_polynomial(blob: Blob) -> Polynomial:
|
|
"""
|
|
Convert a blob to list of BLS field scalars.
|
|
"""
|
|
polynomial = Polynomial()
|
|
for i in range(FIELD_ELEMENTS_PER_BLOB):
|
|
value = bytes_to_bls_field(blob[i * BYTES_PER_FIELD_ELEMENT: (i + 1) * BYTES_PER_FIELD_ELEMENT])
|
|
polynomial[i] = value
|
|
return polynomial
|
|
```
|
|
|
|
#### `compute_challenge`
|
|
|
|
```python
|
|
def compute_challenge(blob: Blob,
|
|
commitment: KZGCommitment) -> BLSFieldElement:
|
|
"""
|
|
Return the Fiat-Shamir challenge required by the rest of the protocol.
|
|
"""
|
|
|
|
# Append the degree of the polynomial as a domain separator
|
|
degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 16, KZG_ENDIANNESS)
|
|
data = FIAT_SHAMIR_PROTOCOL_DOMAIN + degree_poly
|
|
|
|
data += blob
|
|
data += commitment
|
|
|
|
# Transcript has been prepared: time to create the challenge
|
|
return hash_to_bls_field(data)
|
|
```
|
|
|
|
#### `bls_modular_inverse`
|
|
|
|
```python
|
|
def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
|
|
"""
|
|
Compute the modular inverse of x (for x != 0)
|
|
i.e. return y such that x * y % BLS_MODULUS == 1
|
|
"""
|
|
assert (int(x) % BLS_MODULUS) != 0
|
|
return BLSFieldElement(pow(x, -1, BLS_MODULUS))
|
|
```
|
|
|
|
#### `div`
|
|
|
|
```python
|
|
def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement:
|
|
"""
|
|
Divide two field elements: ``x`` by `y``.
|
|
"""
|
|
return BLSFieldElement((int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS)
|
|
```
|
|
|
|
#### `g1_lincomb`
|
|
|
|
```python
|
|
def g1_lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment:
|
|
"""
|
|
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
|
|
"""
|
|
assert len(points) == len(scalars)
|
|
result = bls.Z1()
|
|
for x, a in zip(points, scalars):
|
|
result = bls.add(result, bls.multiply(bls.bytes48_to_G1(x), a))
|
|
return KZGCommitment(bls.G1_to_bytes48(result))
|
|
```
|
|
|
|
#### `compute_powers`
|
|
|
|
```python
|
|
def compute_powers(x: BLSFieldElement, n: uint64) -> Sequence[BLSFieldElement]:
|
|
"""
|
|
Return ``x`` to power of [0, n-1], if n > 0. When n==0, an empty array is returned.
|
|
"""
|
|
current_power = 1
|
|
powers = []
|
|
for _ in range(n):
|
|
powers.append(BLSFieldElement(current_power))
|
|
current_power = current_power * int(x) % BLS_MODULUS
|
|
return powers
|
|
```
|
|
|
|
|
|
### Polynomials
|
|
|
|
#### `evaluate_polynomial_in_evaluation_form`
|
|
|
|
```python
|
|
def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial,
|
|
z: BLSFieldElement) -> BLSFieldElement:
|
|
"""
|
|
Evaluate a polynomial (in evaluation form) at an arbitrary point ``z``.
|
|
- When ``z`` is in the domain, the evaluation can be found by indexing the polynomial at the
|
|
position that ``z`` is in the domain.
|
|
- When ``z`` is not in the domain, the barycentric formula is used:
|
|
f(z) = (z**WIDTH - 1) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i])
|
|
"""
|
|
width = len(polynomial)
|
|
assert width == FIELD_ELEMENTS_PER_BLOB
|
|
inverse_width = bls_modular_inverse(BLSFieldElement(width))
|
|
|
|
roots_of_unity_brp = bit_reversal_permutation(ROOTS_OF_UNITY)
|
|
|
|
# If we are asked to evaluate within the domain, we already know the answer
|
|
if z in roots_of_unity_brp:
|
|
eval_index = roots_of_unity_brp.index(z)
|
|
return BLSFieldElement(polynomial[eval_index])
|
|
|
|
result = 0
|
|
for i in range(width):
|
|
a = BLSFieldElement(int(polynomial[i]) * int(roots_of_unity_brp[i]) % BLS_MODULUS)
|
|
b = BLSFieldElement((int(BLS_MODULUS) + int(z) - int(roots_of_unity_brp[i])) % BLS_MODULUS)
|
|
result += int(div(a, b) % BLS_MODULUS)
|
|
result = result * int(BLS_MODULUS + pow(z, width, BLS_MODULUS) - 1) * int(inverse_width)
|
|
return BLSFieldElement(result % BLS_MODULUS)
|
|
```
|
|
|
|
### KZG
|
|
|
|
KZG core functions. These are also defined in Deneb execution specs.
|
|
|
|
#### `blob_to_kzg_commitment`
|
|
|
|
```python
|
|
def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
|
|
"""
|
|
Public method.
|
|
"""
|
|
assert len(blob) == BYTES_PER_BLOB
|
|
return g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), blob_to_polynomial(blob))
|
|
```
|
|
|
|
#### `verify_kzg_proof`
|
|
|
|
```python
|
|
def verify_kzg_proof(commitment_bytes: Bytes48,
|
|
z_bytes: Bytes32,
|
|
y_bytes: Bytes32,
|
|
proof_bytes: Bytes48) -> bool:
|
|
"""
|
|
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
|
|
Receives inputs as bytes.
|
|
Public method.
|
|
"""
|
|
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
|
|
assert len(z_bytes) == BYTES_PER_FIELD_ELEMENT
|
|
assert len(y_bytes) == BYTES_PER_FIELD_ELEMENT
|
|
assert len(proof_bytes) == BYTES_PER_PROOF
|
|
|
|
return verify_kzg_proof_impl(bytes_to_kzg_commitment(commitment_bytes),
|
|
bytes_to_bls_field(z_bytes),
|
|
bytes_to_bls_field(y_bytes),
|
|
bytes_to_kzg_proof(proof_bytes))
|
|
```
|
|
|
|
|
|
#### `verify_kzg_proof_impl`
|
|
|
|
```python
|
|
def verify_kzg_proof_impl(commitment: KZGCommitment,
|
|
z: BLSFieldElement,
|
|
y: BLSFieldElement,
|
|
proof: KZGProof) -> bool:
|
|
"""
|
|
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
|
|
"""
|
|
# Verify: P - y = Q * (X - z)
|
|
X_minus_z = bls.add(bls.bytes96_to_G2(KZG_SETUP_G2[1]), bls.multiply(bls.G2(), (BLS_MODULUS - z) % BLS_MODULUS))
|
|
P_minus_y = bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), (BLS_MODULUS - y) % BLS_MODULUS))
|
|
return bls.pairing_check([
|
|
[P_minus_y, bls.neg(bls.G2())],
|
|
[bls.bytes48_to_G1(proof), X_minus_z]
|
|
])
|
|
```
|
|
|
|
#### `verify_kzg_proof_batch`
|
|
|
|
```python
|
|
def verify_kzg_proof_batch(commitments: Sequence[KZGCommitment],
|
|
zs: Sequence[BLSFieldElement],
|
|
ys: Sequence[BLSFieldElement],
|
|
proofs: Sequence[KZGProof]) -> bool:
|
|
"""
|
|
Verify multiple KZG proofs efficiently.
|
|
"""
|
|
|
|
assert len(commitments) == len(zs) == len(ys) == len(proofs)
|
|
|
|
# Compute a random challenge. Note that it does not have to be computed from a hash,
|
|
# r just has to be random.
|
|
degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 8, KZG_ENDIANNESS)
|
|
num_commitments = int.to_bytes(len(commitments), 8, KZG_ENDIANNESS)
|
|
data = RANDOM_CHALLENGE_KZG_BATCH_DOMAIN + degree_poly + num_commitments
|
|
|
|
# Append all inputs to the transcript before we hash
|
|
for commitment, z, y, proof in zip(commitments, zs, ys, proofs):
|
|
data += commitment \
|
|
+ int.to_bytes(z, BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS) \
|
|
+ int.to_bytes(y, BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS) \
|
|
+ proof
|
|
|
|
r = hash_to_bls_field(data)
|
|
r_powers = compute_powers(r, len(commitments))
|
|
|
|
# Verify: e(sum r^i proof_i, [s]) ==
|
|
# e(sum r^i (commitment_i - [y_i]) + sum r^i z_i proof_i, [1])
|
|
proof_lincomb = g1_lincomb(proofs, r_powers)
|
|
proof_z_lincomb = g1_lincomb(
|
|
proofs,
|
|
[BLSFieldElement((int(z) * int(r_power)) % BLS_MODULUS) for z, r_power in zip(zs, r_powers)],
|
|
)
|
|
C_minus_ys = [bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), (BLS_MODULUS - y) % BLS_MODULUS))
|
|
for commitment, y in zip(commitments, ys)]
|
|
C_minus_y_as_KZGCommitments = [KZGCommitment(bls.G1_to_bytes48(x)) for x in C_minus_ys]
|
|
C_minus_y_lincomb = g1_lincomb(C_minus_y_as_KZGCommitments, r_powers)
|
|
|
|
return bls.pairing_check([
|
|
[bls.bytes48_to_G1(proof_lincomb), bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2[1]))],
|
|
[bls.add(bls.bytes48_to_G1(C_minus_y_lincomb), bls.bytes48_to_G1(proof_z_lincomb)), bls.G2()]
|
|
])
|
|
```
|
|
|
|
#### `compute_kzg_proof`
|
|
|
|
```python
|
|
def compute_kzg_proof(blob: Blob, z_bytes: Bytes32) -> Tuple[KZGProof, Bytes32]:
|
|
"""
|
|
Compute KZG proof at point `z` for the polynomial represented by `blob`.
|
|
Do this by computing the quotient polynomial in evaluation form: q(x) = (p(x) - p(z)) / (x - z).
|
|
Public method.
|
|
"""
|
|
assert len(blob) == BYTES_PER_BLOB
|
|
assert len(z_bytes) == BYTES_PER_FIELD_ELEMENT
|
|
polynomial = blob_to_polynomial(blob)
|
|
proof, y = compute_kzg_proof_impl(polynomial, bytes_to_bls_field(z_bytes))
|
|
return proof, y.to_bytes(BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS)
|
|
```
|
|
|
|
#### `compute_quotient_eval_within_domain`
|
|
|
|
```python
|
|
def compute_quotient_eval_within_domain(z: BLSFieldElement,
|
|
polynomial: Polynomial,
|
|
y: BLSFieldElement
|
|
) -> BLSFieldElement:
|
|
"""
|
|
Given `y == p(z)` for a polynomial `p(x)`, compute `q(z)`: the KZG quotient polynomial evaluated at `z` for the
|
|
special case where `z` is in `ROOTS_OF_UNITY`.
|
|
|
|
For more details, read https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html section "Dividing
|
|
when one of the points is zero". The code below computes q(x_m) for the roots of unity special case.
|
|
"""
|
|
roots_of_unity_brp = bit_reversal_permutation(ROOTS_OF_UNITY)
|
|
result = 0
|
|
for i, omega_i in enumerate(roots_of_unity_brp):
|
|
if omega_i == z: # skip the evaluation point in the sum
|
|
continue
|
|
|
|
f_i = int(BLS_MODULUS) + int(polynomial[i]) - int(y) % BLS_MODULUS
|
|
numerator = f_i * int(omega_i) % BLS_MODULUS
|
|
denominator = int(z) * (int(BLS_MODULUS) + int(z) - int(omega_i)) % BLS_MODULUS
|
|
result += int(div(BLSFieldElement(numerator), BLSFieldElement(denominator)))
|
|
|
|
return BLSFieldElement(result % BLS_MODULUS)
|
|
```
|
|
|
|
#### `compute_kzg_proof_impl`
|
|
|
|
```python
|
|
def compute_kzg_proof_impl(polynomial: Polynomial, z: BLSFieldElement) -> Tuple[KZGProof, BLSFieldElement]:
|
|
"""
|
|
Helper function for `compute_kzg_proof()` and `compute_blob_kzg_proof()`.
|
|
"""
|
|
roots_of_unity_brp = bit_reversal_permutation(ROOTS_OF_UNITY)
|
|
|
|
# For all x_i, compute p(x_i) - p(z)
|
|
y = evaluate_polynomial_in_evaluation_form(polynomial, z)
|
|
polynomial_shifted = [BLSFieldElement((int(p) - int(y)) % BLS_MODULUS) for p in polynomial]
|
|
|
|
# For all x_i, compute (x_i - z)
|
|
denominator_poly = [BLSFieldElement((int(x) - int(z)) % BLS_MODULUS)
|
|
for x in roots_of_unity_brp]
|
|
|
|
# Compute the quotient polynomial directly in evaluation form
|
|
quotient_polynomial = [BLSFieldElement(0)] * FIELD_ELEMENTS_PER_BLOB
|
|
for i, (a, b) in enumerate(zip(polynomial_shifted, denominator_poly)):
|
|
if b == 0:
|
|
# The denominator is zero hence `z` is a root of unity: we must handle it as a special case
|
|
quotient_polynomial[i] = compute_quotient_eval_within_domain(roots_of_unity_brp[i], polynomial, y)
|
|
else:
|
|
# Compute: q(x_i) = (p(x_i) - p(z)) / (x_i - z).
|
|
quotient_polynomial[i] = div(a, b)
|
|
|
|
return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_LAGRANGE), quotient_polynomial)), y
|
|
```
|
|
|
|
#### `compute_blob_kzg_proof`
|
|
|
|
```python
|
|
def compute_blob_kzg_proof(blob: Blob, commitment_bytes: Bytes48) -> KZGProof:
|
|
"""
|
|
Given a blob, return the KZG proof that is used to verify it against the commitment.
|
|
This method does not verify that the commitment is correct with respect to `blob`.
|
|
Public method.
|
|
"""
|
|
assert len(blob) == BYTES_PER_BLOB
|
|
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
|
|
commitment = bytes_to_kzg_commitment(commitment_bytes)
|
|
polynomial = blob_to_polynomial(blob)
|
|
evaluation_challenge = compute_challenge(blob, commitment)
|
|
proof, _ = compute_kzg_proof_impl(polynomial, evaluation_challenge)
|
|
return proof
|
|
```
|
|
|
|
#### `verify_blob_kzg_proof`
|
|
|
|
```python
|
|
def verify_blob_kzg_proof(blob: Blob,
|
|
commitment_bytes: Bytes48,
|
|
proof_bytes: Bytes48) -> bool:
|
|
"""
|
|
Given a blob and a KZG proof, verify that the blob data corresponds to the provided commitment.
|
|
|
|
Public method.
|
|
"""
|
|
assert len(blob) == BYTES_PER_BLOB
|
|
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
|
|
assert len(proof_bytes) == BYTES_PER_PROOF
|
|
|
|
commitment = bytes_to_kzg_commitment(commitment_bytes)
|
|
|
|
polynomial = blob_to_polynomial(blob)
|
|
evaluation_challenge = compute_challenge(blob, commitment)
|
|
|
|
# Evaluate polynomial at `evaluation_challenge`
|
|
y = evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge)
|
|
|
|
# Verify proof
|
|
proof = bytes_to_kzg_proof(proof_bytes)
|
|
return verify_kzg_proof_impl(commitment, evaluation_challenge, y, proof)
|
|
```
|
|
|
|
#### `verify_blob_kzg_proof_batch`
|
|
|
|
```python
|
|
def verify_blob_kzg_proof_batch(blobs: Sequence[Blob],
|
|
commitments_bytes: Sequence[Bytes48],
|
|
proofs_bytes: Sequence[Bytes48]) -> bool:
|
|
"""
|
|
Given a list of blobs and blob KZG proofs, verify that they correspond to the provided commitments.
|
|
|
|
Public method.
|
|
"""
|
|
|
|
assert len(blobs) == len(commitments_bytes) == len(proofs_bytes)
|
|
|
|
commitments, evaluation_challenges, ys, proofs = [], [], [], []
|
|
for blob, commitment_bytes, proof_bytes in zip(blobs, commitments_bytes, proofs_bytes):
|
|
assert len(blob) == BYTES_PER_BLOB
|
|
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
|
|
assert len(proof_bytes) == BYTES_PER_PROOF
|
|
commitment = bytes_to_kzg_commitment(commitment_bytes)
|
|
commitments.append(commitment)
|
|
polynomial = blob_to_polynomial(blob)
|
|
evaluation_challenge = compute_challenge(blob, commitment)
|
|
evaluation_challenges.append(evaluation_challenge)
|
|
ys.append(evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge))
|
|
proofs.append(bytes_to_kzg_proof(proof_bytes))
|
|
|
|
return verify_kzg_proof_batch(commitments, evaluation_challenges, ys, proofs)
|
|
```
|
|
|