15 KiB
Ethereum 2.0 Phase 1 -- Shard Data Chains
Notice: This document is a work-in-progress for researchers and implementers.
Table of contents
- Ethereum 2.0 Phase 1 -- Shard Data Chains
Introduction
This document describes the shard data layer and the shard fork choice rule in Phase 1 of Ethereum 2.0.
Constants
Misc
Name | Value |
---|---|
BYTES_PER_SHARD_BLOCK_BODY |
2**14 (= 16,384) |
MAX_SHARD_ATTESTIONS |
2**4 (= 16) |
PHASE_1_FORK_EPOCH |
TBD |
PHASE_1_FORK_SLOT |
TBD |
GENESIS_SHARD_SLOT |
0 |
Time parameters
Name | Value | Unit | Duration |
---|---|---|---|
CROSSLINK_LOOKBACK |
2**0 (= 1) |
epochs | 6.2 minutes |
PERSISTENT_COMMITTEE_PERIOD |
2**11 (= 2,048) |
epochs | ~9 days |
SECONDS_PER_SLOT |
2**1 * 3**1 (= 6) |
6 seconds |
Signature domains
Name | Value |
---|---|
DOMAIN_SHARD_PROPOSER |
128 |
DOMAIN_SHARD_ATTESTER |
129 |
Data structures
ShardBlockBody
class ShardBlockBody(Container):
data: Vector[bytes, BYTES_PER_SHARD_BLOCK_BODY]
ShardAttestation
class ShardAttestation(Container):
class data(Container):
slot: Slot
shard: Shard
shard_block_root: Bytes32
aggregation_bitfield: bytes
aggregate_signature: BLSSignature
ShardBlock
class ShardBlock(Container):
slot: Slot
shard: Shard
beacon_chain_root: Bytes32
parent_root: Bytes32
data: ShardBlockBody
state_root: Bytes32
attestations: List[ShardAttestation]
signature: BLSSignature
ShardBlockHeader
class ShardBlockHeader(Container):
slot: Slot
shard: Shard
beacon_chain_root: Bytes32
parent_root: Bytes32
body_root: Bytes32
state_root: Bytes32
attestations: List[ShardAttestation]
signature: BLSSignature
Helper functions
get_period_committee
def get_period_committee(state: BeaconState,
epoch: Epoch,
shard: Shard,
index: int,
count: int) -> List[ValidatorIndex]:
"""
Return committee for a period. Used to construct persistent committees.
"""
return compute_committee(
indices=get_active_validator_indices(state, epoch),
seed=generate_seed(state, epoch),
index=shard * count + index,
count=SHARD_COUNT * count,
)
get_switchover_epoch
def get_switchover_epoch(state: BeaconState, epoch: Epoch, index: ValidatorIndex) -> int:
earlier_start_epoch = Epoch(epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD * 2)
return (bytes_to_int(hash(generate_seed(state, earlier_start_epoch) + int_to_bytes(index, length=3)[0:8]))
% PERSISTENT_COMMITTEE_PERIOD)
get_persistent_committee
def get_persistent_committee(state: BeaconState,
shard: Shard,
slot: Slot) -> List[ValidatorIndex]:
"""
Return the persistent committee for the given ``shard`` at the given ``slot``.
"""
epoch = slot_to_epoch(slot)
earlier_start_epoch = Epoch(epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD * 2)
later_start_epoch = Epoch(epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD)
committee_count = max(
len(get_active_validator_indices(state, earlier_start_epoch)) //
(SHARD_COUNT * TARGET_COMMITTEE_SIZE),
len(get_active_validator_indices(state, later_start_epoch)) //
(SHARD_COUNT * TARGET_COMMITTEE_SIZE),
) + 1
index = slot % committee_count
earlier_committee = get_period_committee(state, earlier_start_epoch, shard, index, committee_count)
later_committee = get_period_committee(state, later_start_epoch, shard, index, committee_count)
# Take not-yet-cycled-out validators from earlier committee and already-cycled-in validators from
# later committee; return a sorted list of the union of the two, deduplicated
return sorted(list(set(
[i for i in earlier_committee if epoch % PERSISTENT_COMMITTEE_PERIOD < get_switchover_epoch(state, epoch, i)] +
[i for i in later_committee if epoch % PERSISTENT_COMMITTEE_PERIOD >= get_switchover_epoch(state, epoch, i)]
)))
get_shard_proposer_index
def get_shard_proposer_index(state: BeaconState,
shard: Shard,
slot: Slot) -> Optional[ValidatorIndex]:
# Randomly shift persistent committee
persistent_committee = get_persistent_committee(state, shard, slot)
seed = hash(state.current_shuffling_seed + int_to_bytes(shard, length=8) + int_to_bytes(slot, length=8))
random_index = bytes_to_int(seed[0:8]) % len(persistent_committee)
persistent_committee = persistent_committee[random_index:] + persistent_committee[:random_index]
# Search for an active proposer
for index in persistent_committee:
if is_active_validator(state.validator_registry[index], get_current_epoch(state)):
return index
# No block can be proposed if no validator is active
return None
get_shard_header
def get_shard_header(block: ShardBlock) -> ShardBlockHeader:
return ShardBlockHeader(
slot=block.slot,
shard=block.shard,
beacon_chain_root=block.beacon_chain_root,
parent_root=block.parent_root,
body_root=hash_tree_root(block.body),
state_root=block.state_root,
attestations=block.attestations,
signature=block.signature,
)
verify_shard_attestation_signature
def verify_shard_attestation_signature(state: BeaconState,
attestation: ShardAttestation) -> None:
data = attestation.data
persistent_committee = get_persistent_committee(state, data.shard, data.slot)
assert verify_bitfield(attestation.aggregation_bitfield, len(persistent_committee))
pubkeys = []
for i, index in enumerate(persistent_committee):
if get_bitfield_bit(attestation.aggregation_bitfield, i) == 0b1:
validator = state.validator_registry[index]
assert is_active_validator(validator, get_current_epoch(state))
pubkeys.append(validator.pubkey)
assert bls_verify(
pubkey=bls_aggregate_pubkeys(pubkeys),
message_hash=data.shard_block_root,
signature=attestation.aggregate_signature,
domain=get_domain(state, DOMAIN_SHARD_ATTESTER, slot_to_epoch(data.slot))
)
compute_crosslink_data_root
def compute_crosslink_data_root(blocks: List[ShardBlock]) -> Bytes32:
def is_power_of_two(value: int) -> bool:
return (value > 0) and (value & (value - 1) == 0)
def pad_to_power_of_2(values: List[bytes]) -> List[bytes]:
while not is_power_of_two(len(values)):
values += [b'\x00' * BYTES_PER_SHARD_BLOCK_BODY]
return values
def hash_tree_root_of_bytes(data: bytes) -> bytes:
return hash_tree_root([data[i:i + 32] for i in range(0, len(data), 32)])
def zpad(data: bytes, length: int) -> bytes:
return data + b'\x00' * (length - len(data))
return hash(
hash_tree_root(pad_to_power_of_2([
hash_tree_root_of_bytes(
zpad(serialize(get_shard_header(block)), BYTES_PER_SHARD_BLOCK_BODY)
) for block in blocks
]))
+ hash_tree_root(pad_to_power_of_2([
hash_tree_root_of_bytes(block.body) for block in blocks
]))
)
Object validity
Shard blocks
Let:
beacon_blocks
be theBeaconBlock
list such thatbeacon_blocks[slot]
is the canonicalBeaconBlock
at slotslot
beacon_state
be the canonicalBeaconState
after processingbeacon_blocks[-1]
valid_shard_blocks
be the list of validShardBlock
, recursively definedcandidate
be a candidateShardBlock
for which validity is to be determined by runningis_valid_shard_block
def is_valid_shard_block(beacon_blocks: List[BeaconBlock],
beacon_state: BeaconState,
valid_shard_blocks: List[ShardBlock],
candidate: ShardBlock) -> bool:
# Check if block is already determined valid
for _, block in enumerate(valid_shard_blocks):
if candidate == block:
return True
# Check slot number
assert candidate.slot >= PHASE_1_FORK_SLOT
# Check shard number
assert candidate.shard <= SHARD_COUNT
# Check beacon block
beacon_block = beacon_blocks[candidate.slot]
assert candidate.beacon_block_root == signing_root(beacon_block)
assert beacon_block.slot <= candidate.slot
# Check state root
assert candidate.state_root == ZERO_HASH # [to be removed in phase 2]
# Check parent block
if candidate.slot == PHASE_1_FORK_SLOT:
assert candidate.parent_root == ZERO_HASH
else:
parent_block = next(
(block for block in valid_shard_blocks if signing_root(block) == candidate.parent_root),
None
)
assert parent_block is not None
assert parent_block.shard == candidate.shard
assert parent_block.slot < candidate.slot
assert signing_root(beacon_blocks[parent_block.slot]) == parent_block.beacon_chain_root
# Check attestations
assert len(candidate.attestations) <= MAX_SHARD_ATTESTIONS
for _, attestation in enumerate(candidate.attestations):
assert max(GENESIS_SHARD_SLOT, candidate.slot - SLOTS_PER_EPOCH) <= attestation.data.slot
assert attestation.data.slot <= candidate.slot - MIN_ATTESTATION_INCLUSION_DELAY
assert attestation.data.crosslink.shard == candidate.shard
verify_shard_attestation_signature(beacon_state, attestation)
# Check signature
proposer_index = get_shard_proposer_index(beacon_state, candidate.shard, candidate.slot)
assert proposer_index is not None
assert bls_verify(
pubkey=beacon_state.validator_registry[proposer_index].pubkey,
message_hash=signing_root(block),
signature=candidate.signature,
domain=get_domain(beacon_state, DOMAIN_SHARD_PROPOSER, slot_to_epoch(candidate.slot)),
)
return True
Shard attestations
Let:
valid_shard_blocks
be the list of validShardBlock
beacon_state
be the canonicalBeaconState
candidate
be a candidateShardAttestation
for which validity is to be determined by runningis_valid_shard_attestation
def is_valid_shard_attestation(valid_shard_blocks: List[ShardBlock],
beacon_state: BeaconState,
candidate: ShardAttestation) -> bool:
# Check shard block
shard_block = next(
(block for block in valid_shard_blocks if signing_root(block) == candidate.data.shard_block_root),
None,
)
assert shard_block is not None
assert shard_block.slot == candidate.data.slot
assert shard_block.shard == candidate.data.shard
# Check signature
verify_shard_attestation_signature(beacon_state, candidate)
return True
Beacon attestations
Let:
shard
be a validShard
shard_blocks
be theShardBlock
list such thatshard_blocks[slot]
is the canonicalShardBlock
for shardshard
at slotslot
beacon_state
be the canonicalBeaconState
valid_attestations
be the list of validAttestation
, recursively definedcandidate
be a candidateAttestation
which is valid under Phase 0 rules, and for which validity is to be determined under Phase 1 rules by runningis_valid_beacon_attestation
def is_valid_beacon_attestation(shard: Shard,
shard_blocks: List[ShardBlock],
beacon_state: BeaconState,
valid_attestations: List[Attestation],
candidate: Attestation) -> bool:
# Check if attestation is already determined valid
for _, attestation in enumerate(valid_attestations):
if candidate == attestation:
return True
# Check previous attestation
if candidate.data.previous_crosslink.epoch <= PHASE_1_FORK_EPOCH:
assert candidate.data.previous_crosslink.data_root == ZERO_HASH
else:
previous_attestation = next(
(attestation for attestation in valid_attestations if
attestation.data.crosslink.data_root == candidate.data.previous_crosslink.data_root),
None,
)
assert previous_attestation is not None
assert candidate.data.previous_attestation.epoch < slot_to_epoch(candidate.data.slot)
# Check crosslink data root
start_epoch = beacon_state.latest_crosslinks[shard].epoch
end_epoch = min(slot_to_epoch(candidate.data.slot) - CROSSLINK_LOOKBACK, start_epoch + MAX_EPOCHS_PER_CROSSLINK)
blocks = []
for slot in range(start_epoch * SLOTS_PER_EPOCH, end_epoch * SLOTS_PER_EPOCH):
blocks.append(shard_blocks[slot])
assert candidate.data.crosslink.data_root == compute_crosslink_data_root(blocks)
return True
Shard fork choice rule
The fork choice rule for any shard is LMD GHOST using the shard attestations of the persistent committee and the beacon chain attestations of the crosslink committee currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (i.e. state.crosslinks[shard].shard_block_root
). Only blocks whose beacon_chain_root
is the block in the main beacon chain at the specified slot
should be considered. (If the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than that slot.)