1. Use `+` to concatenate the merkle roots in `hash` function. 2. Fix `pad_to_power_of_2`: padding with `[b'\x00' * SHARD_BLOCK_SIZE]`, not `[SHARD_BLOCK_SIZE]`.
11 KiB
Ethereum 2.0 Phase 1 -- Shard Data Chains
tags: spec
, eth2.0
, casper
, sharding
NOTICE: This document is a work-in-progress for researchers and implementers. It reflects recent spec changes and takes precedence over the Python proof-of-concept implementation.
Introduction
This document represents the specification for Phase 1 of Ethereum 2.0 -- Shard Data Chains. Phase 1 depends on the implementation of Phase 0 -- The Beacon Chain.
Ethereum 2.0 consists of a central beacon chain along with SHARD_COUNT
shard chains. Phase 1 is primarily concerned with the construction, validity, and consensus on the data of these shard chains. Phase 1 does not specify shard chain state execution or account balances. This is left for future phases.
Terminology
Constants
Phase 1 depends upon all of the constants defined in Phase 0 in addition to the following:
Constant | Value | Unit | Approximation |
---|---|---|---|
SHARD_CHUNK_SIZE |
2**5 (= 32) | bytes | |
SHARD_BLOCK_SIZE |
2**14 (= 16,384) | bytes | |
CROSSLINK_LOOKBACK |
2**5 (= 32) | slots | |
PERSISTENT_COMMITTEE_PERIOD |
2**11 (= 2,048) | epochs | 9 days |
Flags, domains, etc.
Constant | Value |
---|---|
SHARD_PROPOSER_DOMAIN |
129 |
SHARD_ATTESTER_DOMAIN |
130 |
Helper functions
get_split_offset
def get_split_offset(list_size: int, chunks: int, index: int) -> int:
"""
Returns a value such that for a list L, chunk count k and index i,
split(L, k)[i] == L[get_split_offset(len(L), k, i): get_split_offset(len(L), k+1, i)]
"""
return (len(list_size) * index) // chunks
get_shuffled_committee
def get_shuffled_committee(state: BeaconState,
shard: ShardNumber,
committee_start_epoch: EpochNumber) -> List[ValidatorIndex]:
"""
Return shuffled committee.
"""
validator_indices = get_active_validator_indices(state.validators, committee_start_epoch)
seed = generate_seed(state, committee_start_epoch)
start_offset = get_split_offset(len(validator_indices), SHARD_COUNT, shard)
end_offset = get_split_offset(len(validator_indices), SHARD_COUNT, shard + 1)
return [
validator_indices[get_permuted_index(i, len(validator_indices), seed)]
for i in range(start_offset, end_offset)
]
get_persistent_committee
def get_persistent_committee(state: BeaconState,
shard: ShardNumber,
epoch: EpochNumber) -> List[ValidatorIndex]:
"""
Return the persistent committee for the given ``shard`` at the given ``epoch``.
"""
earlier_committee_start_epoch = epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD * 2
earlier_committee = get_shuffled_committee(state, shard, earlier_committee_start_epoch)
later_committee_start_epoch = epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD
later_committee = get_shuffled_committee(state, shard, later_committee_start_epoch)
def get_switchover_epoch(index):
return (
bytes_to_int(hash(earlier_seed + bytes3(index))[0:8]) %
PERSISTENT_COMMITTEE_PERIOD
)
# Take not-yet-cycled-out validators from earlier committee and already-cycled-in validators from
# later committee; return a sorted list of the union of the two, deduplicated
return sorted(list(set(
[i for i in earlier_committee if epoch % PERSISTENT_COMMITTEE_PERIOD < get_switchover_epoch(i)] +
[i for i in later_committee if epoch % PERSISTENT_COMMITTEE_PERIOD >= get_switchover_epoch(i)]
)))
get_shard_proposer_index
def get_shard_proposer_index(state: BeaconState,
shard: ShardNumber,
slot: SlotNumber) -> ValidatorIndex:
seed = hash(
state.current_epoch_seed +
int_to_bytes8(shard) +
int_to_bytes8(slot)
)
persistent_committee = get_persistent_committee(state, shard, slot_to_epoch(slot))
# Default proposer
index = bytes_to_int(seed[0:8]) % len(persistent_committee)
# If default proposer exits, try the other proposers in order; if all are exited
# return None (ie. no block can be proposed)
validators_to_try = persistent_committee[index:] + persistent_committee[:index]
for index in validators_to_try:
if is_active_validator(state.validators[index], get_current_epoch(state)):
return index
return None
Data Structures
Shard chain blocks
A ShardBlock
object has the following fields:
{
# Slot number
'slot': 'uint64',
# What shard is it on
'shard_id': 'uint64',
# Parent block's root
'parent_root': 'bytes32',
# Beacon chain block
'beacon_chain_ref': 'bytes32',
# Merkle root of data
'data_root': 'bytes32'
# State root (placeholder for now)
'state_root': 'bytes32',
# Block signature
'signature': 'bytes96',
# Attestation
'participation_bitfield': 'bytes',
'aggregate_signature': 'bytes96',
}
Shard block processing
For a shard_block
on a shard to be processed by a node, the following conditions must be met:
- The
ShardBlock
pointed to byshard_block.parent_root
has already been processed and accepted - The signature for the block from the proposer (see below for definition) of that block is included along with the block in the network message object
To validate a block header on shard shard_block.shard_id
, compute as follows:
- Verify that
shard_block.beacon_chain_ref
is the hash of a block in the (canonical) beacon chain with slot less than or equal toslot
. - Verify that
shard_block.beacon_chain_ref
is equal to or a descendant of theshard_block.beacon_chain_ref
specified in theShardBlock
pointed to byshard_block.parent_root
. - Let
state
be the state of the beacon chain block referred to byshard_block.beacon_chain_ref
. - Let
persistent_committee = get_persistent_committee(state, shard_block.shard_id, slot_to_epoch(shard_block.slot))
. - Assert
verify_bitfield(shard_block.participation_bitfield, len(persistent_committee))
- For every
i in range(len(persistent_committee))
whereis_active_validator(state.validators[persistent_committee[i]], get_current_epoch(state))
returnsFalse
, verify thatget_bitfield_bit(shard_block.participation_bitfield, i) == 0
- Let
proposer_index = get_shard_proposer_index(state, shard_block.shard_id, shard_block.slot)
. - Verify that
proposer_index
is notNone
. - Let
msg
be theshard_block
but withshard_block.signature
set to[0, 0]
. - Verify that
bls_verify(pubkey=validators[proposer_index].pubkey, message_hash=hash(msg), signature=shard_block.signature, domain=get_domain(state, slot_to_epoch(shard_block.slot), SHARD_PROPOSER_DOMAIN))
passes. - Let
group_public_key = bls_aggregate_pubkeys([state.validators[index].pubkey for i, index in enumerate(persistent_committee) if get_bitfield_bit(shard_block.participation_bitfield, i) is True])
. - Verify that
bls_verify(pubkey=group_public_key, message_hash=shard_block.parent_root, sig=shard_block.aggregate_signature, domain=get_domain(state, slot_to_epoch(shard_block.slot), SHARD_ATTESTER_DOMAIN))
passes.
Verifying shard block data
At network layer, we expect a shard block header to be broadcast along with its block_body
.
- Verify that
len(block_body) == SHARD_BLOCK_SIZE
- Verify that
merkle_root(block_body)
equals thedata_root
in the header.
Verifying a crosslink
A node should sign a crosslink only if the following conditions hold. If a node has the capability to perform the required level of verification, it should NOT follow chains on which a crosslink for which these conditions do NOT hold has been included, or a sufficient number of signatures have been included that during the next state recalculation, a crosslink will be registered.
First, the conditions must recursively apply to the crosslink referenced in last_crosslink_root
for the same shard (unless last_crosslink_root
equals zero, in which case we are at the genesis).
Second, we verify the shard_chain_commitment
.
- Let
start_slot = state.latest_crosslinks[shard].epoch * EPOCH_LENGTH + EPOCH_LENGTH - CROSSLINK_LOOKBACK
. - Let
end_slot = attestation.data.slot - attestation.data.slot % EPOCH_LENGTH - CROSSLINK_LOOKBACK
. - Let
length = end_slot - start_slot
,headers[0] .... headers[length-1]
be the serialized block headers in the canonical shard chain from the verifer's point of view (note that this implies thatheaders
andbodies
have been checked for validity). - Let
bodies[0] ... bodies[length-1]
be the bodies of the blocks. - Note: If there is a missing slot, then the header and body are the same as that of the block at the most recent slot that has a block.
We define two helpers:
def pad_to_power_of_2(values: List[bytes]) -> List[bytes]:
zero_shard_block = b'\x00' * SHARD_BLOCK_SIZE
while not is_power_of_two(len(values)):
values = values + [zero_shard_block]
return values
def merkle_root_of_bytes(data: bytes) -> bytes:
return merkle_root([data[i:i + 32] for i in range(0, len(data), 32)])
We define the function for computing the commitment as follows:
def compute_commitment(headers: List[ShardBlock], bodies: List[bytes]) -> Bytes32:
return hash(
merkle_root(
pad_to_power_of_2([
merkle_root_of_bytes(zpad(serialize(h), SHARD_BLOCK_SIZE)) for h in headers
])
) +
merkle_root(
pad_to_power_of_2([
merkle_root_of_bytes(h) for h in bodies
])
)
)
The shard_chain_commitment
is only valid if it equals compute_commitment(headers, bodies)
.
Shard block fork choice rule
The fork choice rule for any shard is LMD GHOST using the shard chain attestations of the persistent committee and the beacon chain attestations of the crosslink committee currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (ie. state.crosslinks[shard].shard_block_root
). Only blocks whose beacon_chain_ref
is the block in the main beacon chain at the specified slot
should be considered (if the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than a slot).