4.6 KiB
4.6 KiB
Ethereum 2.0 Phase 1 -- Data Availability Sampling
Notice: This document is a work-in-progress for researchers and implementers.
Table of contents
Custom types
We define the following Python custom types for type hinting and readability:
Name | SSZ equivalent | Description |
---|---|---|
SampleIndex |
uint64 |
A sample index, corresponding to chunk of extended data |
BLSPoint |
uint256 |
A number x in the range 0 <= x < MODULUS |
New containers
DASSample
class DASSample(Container):
slot: Slot
shard: Shard
index: SampleIndex
proof: BLSKateProof
data: Vector[BLSPoint, POINTS_PER_SAMPLE]
Helper functions
Data extension
Implementations:
def das_fft_extension(data: Sequence[Point]) -> Sequence[Point]:
"""Given some even-index values of an IFFT input, compute the odd-index inputs, such that the second output half is all zeroes."""
poly = inverse_fft(data)
return fft(poly + [0]*len(poly))[1::2]
Data recovery
See Reed-Solomon erasure code recovery in n*log^2(n) time with FFTs for theory. Implementations:
def recover_data(data: Sequence[Optional[Point]]) -> Sequence[Point]:
"""Given an a subset of half or more of the values (missing values are None), recover the None values."""
...
DAS functions
def extend_data(data: Sequence[Point]) -> Sequence[Point]:
# To force adjacent data into the same proofs, reverse-bit-order the whole list.
evens = [data[reverse_bit_order(i, len(data))] for i in range(len(data))]
# last step of reverse-bit-order: mix in the extended data.
# When undoing the reverse bit order: 1st half matches original data, and 2nd half matches the extension.
odds = das_fft_extension(data)
return [evens[i//2] if i % 2 == 0 else odds[i//2] for i in range(len(data)*2)]
def unextend_data(extended_data: Sequence[Point]) -> Sequence[Point]:
return [extended_data[reverse_bit_order(i, len(extended_data))] for i in range(len(extended_data)//2)]
def check_multi_kate_proof(commitment: BLSCommitment, proof: BLSKateProof, x: Point, ys: Sequence[Point]) -> bool:
...
def construct_proofs(extended_data_as_poly: Sequence[Point]) -> Sequence[BLSKateProof]:
"""Constructs proofs for samples of extended data (in polynomial form, 2nd half being zeroes)"""
... # TODO Use FK20 multi-proof code to construct proofs for a chunk length of POINTS_PER_SAMPLE.
def sample_data(slot: Slot, shard: Shard, extended_data: Sequence[Point]) -> Sequence[DASSample]:
# TODO: padding of last sample (if not a multiple of POINTS_PER_SAMPLE)
sample_count = len(extended_data) // POINTS_PER_SAMPLE
assert sample_count <= MAX_SAMPLES_PER_BLOCK
proofs = construct_proofs(ifft(extended_data))
return [
DASSample(
slot=slot,
shard=shard,
index=i,
proof=proofs[reverse_bit_order(i, sample_count)], # TODO: proof order depends on API of construct_proofs
data=reverse_bit_order_list(extended_data[i*POINTS_PER_SAMPLE:(i+1)*POINTS_PER_SAMPLE]) # TODO: can reorder here, or defer
) for i in range(sample_count)
]
def verify_sample(sample: DASSample, sample_count: uint64, commitment: BLSCommitment):
domain_pos = reverse_bit_order(sample.index, sample_count)
sample_root_of_unity = ROOT_OF_UNITY**MAX_SAMPLES_PER_BLOCK # change point-level to sample-level domain
x = sample_root_of_unity**domain_pos
assert check_multi_kate_proof(commitment, sample.proof, x, sample.data)
def reconstruct_extended_data(samples: Sequence[Optional[DASSample]]) -> Sequence[Point]:
extended_data = [None] * (len(samples) * POINTS_PER_SAMPLE)
for sample in samples:
offset = sample.index * POINTS_PER_SAMPLE
for i, p in enumerate(sample.data):
extended_data[offset+i] = p
return recover_data(extended_data)