eth2.0-specs/specs/bls_signature.md
2019-05-06 16:30:32 +01:00

6.8 KiB

BLS signature verification

Warning: This document is pending academic review and should not yet be considered secure.

Table of contents

Curve parameters

The BLS12-381 curve parameters are defined here.

Point representations

We represent points in the groups G1 and G2 following zkcrypto/pairing. We denote by q the field modulus and by i the imaginary unit.

G1 points

A point in G1 is represented as a 384-bit integer z decomposed as a 381-bit integer x and three 1-bit flags in the top bits:

  • x = z % 2**381
  • a_flag = (z % 2**382) // 2**381
  • b_flag = (z % 2**383) // 2**382
  • c_flag = (z % 2**384) // 2**383

Respecting bit ordering, z is decomposed as (c_flag, b_flag, a_flag, x).

We require:

  • x < q
  • c_flag == 1
  • if b_flag == 1 then a_flag == x == 0 and z represents the point at infinity
  • if b_flag == 0 then z represents the point (x, y) where y is the valid coordinate such that (y * 2) // q == a_flag

G2 points

A point in G2 is represented as a pair of 384-bit integers (z1, z2). We decompose z1 as above into x1, a_flag1, b_flag1, c_flag1 and z2 into x2, a_flag2, b_flag2, c_flag2.

We require:

  • x1 < q and x2 < q
  • a_flag2 == b_flag2 == c_flag2 == 0
  • c_flag1 == 1
  • if b_flag1 == 1 then a_flag1 == x1 == x2 == 0 and (z1, z2) represents the point at infinity
  • if b_flag1 == 0 then (z1, z2) represents the point (x1 * i + x2, y) where y is the valid coordinate such that the imaginary part y_im of y satisfies (y_im * 2) // q == a_flag1

Helpers

hash_to_G2

G2_cofactor = 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109
q = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787

def hash_to_G2(message_hash: Bytes32, domain: uint64) -> [uint384]:
    # Initial candidate x coordinate
    x_re = int.from_bytes(hash(message_hash + bytes8(domain) + b'\x01'), 'big')
    x_im = int.from_bytes(hash(message_hash + bytes8(domain) + b'\x02'), 'big')
    x_coordinate = Fq2([x_re, x_im])  # x = x_re + i * x_im
    
    # Test candidate y coordinates until a one is found
    while 1:
        y_coordinate_squared = x_coordinate ** 3 + Fq2([4, 4])  # The curve is y^2 = x^3 + 4(i + 1)
        y_coordinate = modular_squareroot(y_coordinate_squared)
        if y_coordinate is not None:  # Check if quadratic residue found
            return multiply_in_G2((x_coordinate, y_coordinate), G2_cofactor)
        x_coordinate += Fq2([1, 0])  # Add 1 and try again

modular_squareroot

modular_squareroot(x) returns a solution y to y**2 % q == x, and None if none exists. If there are two solutions, the one with higher imaginary component is favored; if both solutions have equal imaginary component, the one with higher real component is favored (note that this is equivalent to saying that the single solution with either imaginary component > p/2 or imaginary component zero and real component > p/2 is favored).

The following is a sample implementation; implementers are free to implement modular square roots as they wish. Note that x2 = -x1 is an additive modular inverse so real and imaginary coefficients remain in [0 .. q-1]. coerce_to_int(element: Fq) -> int is a function that takes Fq element element (i.e. integers mod q) and converts it to a regular integer.

Fq2_order = q ** 2 - 1
eighth_roots_of_unity = [Fq2([1,1]) ** ((Fq2_order * k) // 8) for k in range(8)]

def modular_squareroot(value: Fq2) -> Fq2:
    candidate_squareroot = value ** ((Fq2_order + 8) // 16)
    check = candidate_squareroot ** 2 / value
    if check in eighth_roots_of_unity[::2]:
        x1 = candidate_squareroot / eighth_roots_of_unity[eighth_roots_of_unity.index(check) // 2]
        x2 = -x1
        x1_re, x1_im = coerce_to_int(x1.coeffs[0]), coerce_to_int(x1.coeffs[1])
        x2_re, x2_im = coerce_to_int(x2.coeffs[0]), coerce_to_int(x2.coeffs[1])
        return x1 if (x1_im > x2_im or (x1_im == x2_im and x1_re > x2_re)) else x2
    return None

Aggregation operations

bls_aggregate_pubkeys

Let bls_aggregate_pubkeys(pubkeys: List[Bytes48]) -> Bytes48 return pubkeys[0] + .... + pubkeys[len(pubkeys)-1], where + is the elliptic curve addition operation over the G1 curve. (When len(pubkeys) == 0 the empty sum is the G1 point at infinity.)

bls_aggregate_signatures

Let bls_aggregate_signatures(signatures: List[Bytes96]) -> Bytes96 return signatures[0] + .... + signatures[len(signatures)-1], where + is the elliptic curve addition operation over the G2 curve. (When len(signatures) == 0 the empty sum is the G2 point at infinity.)

Signature verification

In the following, e is the pairing function and g is the G1 generator with the following coordinates (see here):

g_x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
g_y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
g = Fq2([g_x, g_y])

bls_verify

Let bls_verify(pubkey: Bytes48, message_hash: Bytes32, signature: Bytes96, domain: uint64) -> bool:

  • Verify that pubkey is a valid G1 point.
  • Verify that signature is a valid G2 point.
  • Verify that e(pubkey, hash_to_G2(message_hash, domain)) == e(g, signature).

bls_verify_multiple

Let bls_verify_multiple(pubkeys: List[Bytes48], message_hashes: List[Bytes32], signature: Bytes96, domain: uint64) -> bool:

  • Verify that each pubkey in pubkeys is a valid G1 point.
  • Verify that signature is a valid G2 point.
  • Verify that len(pubkeys) equals len(message_hashes) and denote the length L.
  • Verify that e(pubkeys[0], hash_to_G2(message_hashes[0], domain)) * ... * e(pubkeys[L-1], hash_to_G2(message_hashes[L-1], domain)) == e(g, signature).