27 KiB
Ethereum 2.0 Phase 0 -- Honest Validator
NOTICE: This document is a work-in-progress for researchers and implementers. This is an accompanying document to Ethereum 2.0 Phase 0 -- The Beacon Chain that describes the expected actions of a "validator" participating in the Ethereum 2.0 protocol.
Table of Contents
- Ethereum 2.0 Phase 0 -- Honest Validator
Introduction
This document represents the expected behavior of an "honest validator" with respect to Phase 0 of the Ethereum 2.0 protocol. This document does not distinguish between a "node" (ie. the functionality of following and reading the beacon chain) and a "validator client" (ie. the functionality of actively participating in consensus). The separation of concerns between these (potentially) two pieces of software is left as a design decision that is out of scope.
A validator is an entity that participates in the consensus of the Ethereum 2.0 protocol. This is an optional role for users in which they can post ETH as collateral and verify and attest to the validity of blocks to seek financial returns in exchange for building and securing the protocol. This is similar to proof of work networks in which a miner provides collateral in the form of hardware/hash-power to seek returns in exchange for building and securing the protocol.
Prerequisites
All terminology, constants, functions, and protocol mechanics defined in the Phase 0 -- The Beacon Chain doc are requisite for this document and used throughout. Please see the Phase 0 doc before continuing and use as a reference throughout.
Constants
Misc
Name | Value | Unit | Duration |
---|---|---|---|
ETH1_FOLLOW_DISTANCE |
2**10 (= 1,024) |
blocks | ~4 hours |
Becoming a validator
Initialization
A validator must initialize many parameters locally before submitting a deposit and joining the validator registry.
BLS public key
Validator public keys are G1 points on the BLS12-381 curve. A private key, privkey
, must be securely generated along with the resultant pubkey
. This privkey
must be "hot", that is, constantly available to sign data throughout the lifetime of the validator.
BLS withdrawal key
A secondary withdrawal private key, withdrawal_privkey
, must also be securely generated along with the resultant withdrawal_pubkey
. This withdrawal_privkey
does not have to be available for signing during the normal lifetime of a validator and can live in "cold storage".
The validator constructs their withdrawal_credentials
via the following:
- Set
withdrawal_credentials[:1] == BLS_WITHDRAWAL_PREFIX_BYTE
. - Set
withdrawal_credentials[1:] == hash(withdrawal_pubkey)[1:]
.
Submit deposit
In phase 0, all incoming validator deposits originate from the Ethereum 1.0 PoW chain. Deposits are made to the deposit contract located at DEPOSIT_CONTRACT_ADDRESS
.
To submit a deposit:
- Pack the validator's initialization parameters into
deposit_input
, aDepositInput
SSZ object. - Set
deposit_input.proof_of_possession = EMPTY_SIGNATURE
. - Let
proof_of_possession
be the result ofbls_sign
of thehash_tree_root(deposit_input)
withdomain=DOMAIN_DEPOSIT
. - Set
deposit_input.proof_of_possession = proof_of_possession
. - Let
amount
be the amount in Gwei to be deposited by the validator whereMIN_DEPOSIT_AMOUNT <= amount <= MAX_DEPOSIT_AMOUNT
. - Send a transaction on the Ethereum 1.0 chain to
DEPOSIT_CONTRACT_ADDRESS
executingdeposit
along withserialize(deposit_input)
as the singularbytes
input along with a depositamount
in Gwei.
Note: Deposits made for the same pubkey
are treated as for the same validator. A singular Validator
will be added to state.validator_registry
with each additional deposit amount added to the validator's balance. A validator can only be activated when total deposits for the validator pubkey meet or exceed MAX_DEPOSIT_AMOUNT
.
Process deposit
Deposits cannot be processed into the beacon chain until the eth1.0 block in which they were deposited or any of its descendants is added to the beacon chain state.eth1_data
. This takes a minimum of ETH1_FOLLOW_DISTANCE
eth1.0 blocks (~4 hours) plus ETH1_DATA_VOTING_PERIOD
epochs (~1.7 hours). Once the requisite eth1.0 data is added, the deposit will normally be added to a beacon chain block and processed into the state.validator_registry
within an epoch or two. The validator is then in a queue to be activated.
Validator index
Once a validator has been processed and added to the beacon state's validator_registry
, the validator's validator_index
is defined by the index into the registry at which the ValidatorRecord
contains the pubkey
specified in the validator's deposit. A validator's validator_index
is guaranteed to not change from the time of initial deposit until the validator exits and fully withdraws. This validator_index
is used throughout the specification to dictate validator roles and responsibilities at any point and should be stored locally.
Activation
In normal operation, the validator is quickly activated at which point the validator is added to the shuffling and begins validation after an additional ACTIVATION_EXIT_DELAY
epochs (25.6 minutes).
The function is_active_validator
can be used to check if a validator is active during a given epoch. Usage is as follows:
validator = state.validator_registry[validator_index]
is_active = is_active_validator(validator, epoch)
Once a validator is activated, the validator is assigned responsibilities until exited.
Note: There is a maximum validator churn per finalized epoch so the delay until activation is variable depending upon finality, total active validator balance, and the number of validators in the queue to be activated.
Beacon chain responsibilities
A validator has two primary responsibilities to the beacon chain -- proposing blocks and creating attestations. Proposals happen infrequently, whereas attestations should be created once per epoch.
Block proposal
A validator is expected to propose a BeaconBlock
at the beginning of any slot during which get_beacon_proposer_index(state, slot)
returns the validator's validator_index
. To propose, the validator selects the BeaconBlock
, parent
, that in their view of the fork choice is the head of the chain during slot
. The validator is to create, sign, and broadcast a block
that is a child of parent
and that executes a valid beacon chain state transition.
There is one proposer per slot, so if there are N active validators any individual validator will on average be assigned to propose once per N slots (eg. at 312500 validators = 10 million ETH, that's once per ~3 weeks).
Block header
Slot
Set block.slot = slot
where slot
is the current slot at which the validator has been selected to propose. The parent
selected must satisfy that parent.slot < block.slot
.
Note: there might be "skipped" slots between the parent
and block
. These skipped slots are processed in the state transition function without per-block processing.
Parent root
Set block.parent_root = hash_tree_root(parent)
.
State root
Set block.state_root = hash_tree_root(state)
of the resulting state
of the parent -> block
state transition.
Note: To calculate state_root
, the validator should first run the state transition function on an unsigned block
containing a stub for the state_root
. It is useful to be able to run a state transition function that does not validate signatures for this purpose.
Randao reveal
Set block.randao_reveal = epoch_signature
where epoch_signature
is defined as:
epoch_signature = bls_sign(
privkey=validator.privkey, # privkey store locally, not in state
message_hash=int_to_bytes32(slot_to_epoch(block.slot)),
domain=get_domain(
fork=fork, # `fork` is the fork object at the slot `block.slot`
epoch=slot_to_epoch(block.slot),
domain_type=DOMAIN_RANDAO,
)
)
Eth1 Data
block.eth1_data
is a mechanism used by block proposers vote on a recent Ethereum 1.0 block hash and an associated deposit root found in the Ethereum 1.0 deposit contract. When consensus is formed, state.latest_eth1_data
is updated, and validator deposits up to this root can be processed. The deposit root can be calculated by calling the get_deposit_root()
function of the deposit contract using the post-state of the block hash.
- Let
D
be the set ofEth1DataVote
objectsvote
instate.eth1_data_votes
where:vote.eth1_data.block_hash
is the hash of an eth1.0 block that is (i) part of the canonical chain, (ii) >=ETH1_FOLLOW_DISTANCE
blocks behind the head, and (iii) newer thanstate.latest_eth1_data.block_data
.vote.eth1_data.deposit_root
is the deposit root of the eth1.0 deposit contract at the block defined byvote.eth1_data.block_hash
.
- If
D
is empty:- Let
block_hash
be the block hash of theETH1_FOLLOW_DISTANCE
'th ancestor of the head of the canonical eth1.0 chain. - Let
deposit_root
be the deposit root of the eth1.0 deposit contract in the post-state of the block referenced byblock_hash
- Let
- If
D
is nonempty:- Let
best_vote
be the member ofD
that has the highestvote.vote_count
, breaking ties by favoring block hashes with higher associated block height. - Let
block_hash = best_vote.eth1_data.block_hash
. - Let
deposit_root = best_vote.eth1_data.deposit_root
.
- Let
- Set
block.eth1_data = Eth1Data(deposit_root=deposit_root, block_hash=block_hash)
.
Signature
Set block.signature = signed_proposal_data
where signed_proposal_data
is defined as:
proposal_data = ProposalSignedData(
slot=slot,
shard=BEACON_CHAIN_SHARD_NUMBER,
block_root=hash_tree_root(block), # where `block.sigature == EMPTY_SIGNATURE
)
proposal_root = hash_tree_root(proposal_data)
signed_proposal_data = bls_sign(
privkey=validator.privkey, # privkey store locally, not in state
message_hash=proposal_root,
domain=get_domain(
fork=fork, # `fork` is the fork object at the slot `block.slot`
epoch=slot_to_epoch(block.slot),
domain_type=DOMAIN_PROPOSAL,
)
)
Block body
Proposer slashings
Up to MAX_PROPOSER_SLASHINGS
ProposerSlashing
objects can be included in the block
. The proposer slashings must satisfy the verification conditions found in proposer slashings processing. The validator receives a small "whistleblower" reward for each proposer slashing found and included.
Attester slashings
Up to MAX_ATTESTER_SLASHINGS
AttesterSlashing
objects can be included in the block
. The attester slashings must satisfy the verification conditions found in Attester slashings processing. The validator receives a small "whistleblower" reward for each attester slashing found and included.
Attestations
Up to MAX_ATTESTATIONS
aggregate attestations can be included in the block
. The attestations added must satisfy the verification conditions found in attestation processing. To maximize profit, the validator should attempt to create aggregate attestations that include singular attestations from the largest number of validators whose signatures from the same epoch have not previously been added on chain.
Deposits
Up to MAX_DEPOSITS
Deposit
objects can be included in the block
. These deposits are constructed from the Deposit
logs from the Eth1.0 deposit contract and must be processed in sequential order. The deposits included in the block
must satisfy the verification conditions found in deposits processing.
Voluntary exits
Up to MAX_VOLUNTARY_EXITS
VoluntaryExit
objects can be included in the block
. The exits must satisfy the verification conditions found in exits processing.
Attestations
A validator is expected to create, sign, and broadcast an attestation during each epoch. The slot during which the validator performs this role is any slot at which get_crosslink_committees_at_slot(state, slot)
contains a committee that contains validator_index
.
A validator should create and broadcast the attestation halfway through the slot
during which the validator is assigned -- that is SECONDS_PER_SLOT * 0.5
seconds after the start of slot
.
Attestation data
First the validator should construct attestation_data
, an AttestationData
object based upon the state at the assigned slot.
Slot
Set attestation_data.slot = slot
where slot
is the current slot of which the validator is a member of a committee.
Shard
Set attestation_data.shard = shard
where shard
is the shard associated with the validator's committee defined by get_crosslink_committees_at_slot
.
Beacon block root
Set attestation_data.beacon_block_root = hash_tree_root(head)
where head
is the validator's view of the head
block of the beacon chain during slot
.
Epoch boundary root
Set attestation_data.epoch_boundary_root = hash_tree_root(epoch_boundary)
where epoch_boundary
is the block at the most recent epoch boundary in the chain defined by head
-- i.e. the BeaconBlock
where block.slot == get_epoch_start_slot(slot_to_epoch(head.slot))
.
Note: This can be looked up in the state using:
- Let
epoch_start_slot = get_epoch_start_slot(slot_to_epoch(head.slot))
. - Set
epoch_boundary_root = hash_tree_root(head) if epoch_start_slot == head.slot else get_block_root(state, epoch_start_slot)
.
Crosslink data root
Set attestation_data.crosslink_data_root = ZERO_HASH
.
Note: This is a stub for phase 0.
Latest crosslink
Set attestation_data.latest_crosslink = state.latest_crosslinks[shard]
where state
is the beacon state at head
and shard
is the validator's assigned shard.
Justified epoch
Set attestation_data.justified_epoch = state.justified_epoch
where state
is the beacon state at head
.
Justified block root
Set attestation_data.justified_block_root = hash_tree_root(justified_block)
where justified_block
is the block at the slot get_epoch_start_slot(state.justified_epoch)
in the chain defined by head
.
Note: This can be looked up in the state using get_block_root(state, get_epoch_start_slot(state.justified_epoch))
.
Construct attestation
Next the validator creates attestation
, an Attestation
object.
Data
Set attestation.data = attestation_data
where attestation_data
is the AttestationData
object defined in the previous section, attestation data.
Aggregation bitfield
- Let
aggregation_bitfield
be a byte array filled with zeros of length(len(committee) + 7) // 8
. - Let
index_into_committee
be the index into the validator'scommittee
at whichvalidator_index
is located. - Set
aggregation_bitfield[index_into_committee // 8] |= 2 ** (index_into_committee % 8)
. - Set
attestation.aggregation_bitfield = aggregation_bitfield
.
Note: Calling get_attestation_participants(state, attestation.data, attestation.aggregation_bitfield)
should return a list of length equal to 1, containing validator_index
.
Custody bitfield
- Let
custody_bitfield
be a byte array filled with zeros of length(len(committee) + 7) // 8
. - Set
attestation.custody_bitfield = custody_bitfield
.
Note: This is a stub for phase 0.
Aggregate signature
Set attestation.aggregate_signature = signed_attestation_data
where signed_attestation_data
is defined as:
attestation_data_and_custody_bit = AttestationDataAndCustodyBit(
data=attestation.data,
custody_bit=0b0,
)
attestation_message_to_sign = hash_tree_root(attestation_data_and_custody_bit)
signed_attestation_data = bls_sign(
privkey=validator.privkey, # privkey store locally, not in state
message_hash=attestation_message_to_sign,
domain=get_domain(
fork=fork, # `fork` is the fork object at the slot, `attestation_data.slot`
epoch=slot_to_epoch(attestation_data.slot),
domain_type=DOMAIN_ATTESTATION,
)
)
Validator assignments
A validator can get the current and previous epoch committee assignments using the following helper via get_committee_assignment(state, epoch, validator_index)
where previous_epoch <= epoch <= current_epoch
.
def get_committee_assignment(
state: BeaconState,
epoch: Epoch,
validator_index: ValidatorIndex,
registry_change: bool=False) -> Tuple[List[ValidatorIndex], Shard, Slot, bool]:
"""
Return the committee assignment in the ``epoch`` for ``validator_index`` and ``registry_change``.
``assignment`` returned is a tuple of the following form:
* ``assignment[0]`` is the list of validators in the committee
* ``assignment[1]`` is the shard to which the committee is assigned
* ``assignment[2]`` is the slot at which the committee is assigned
* ``assignment[3]`` is a bool signalling if the validator is expected to propose
a beacon block at the assigned slot.
"""
previous_epoch = get_previous_epoch(state)
next_epoch = get_current_epoch(state)
assert previous_epoch <= epoch <= next_epoch
epoch_start_slot = get_epoch_start_slot(epoch)
for slot in range(epoch_start_slot, epoch_start_slot + SLOTS_PER_EPOCH):
crosslink_committees = get_crosslink_committees_at_slot(
state,
slot,
registry_change=registry_change,
)
selected_committees = [
committee # Tuple[List[ValidatorIndex], Shard]
for committee in crosslink_committees
if validator_index in committee[0]
]
if len(selected_committees) > 0:
validators = selected_committees[0][0]
shard = selected_committees[0][1]
first_committee_at_slot = crosslink_committees[0][0] # List[ValidatorIndex]
is_proposer = first_committee_at_slot[slot % len(first_committee_at_slot)] == validator_index
assignment = (validators, shard, slot, is_proposer)
return assignment
Lookahead
The beacon chain shufflings are designed to provide a minimum of 1 epoch lookahead on the validator's upcoming assignemnts of proposing and attesting dictated by the shuffling and slot.
There are three possibilities for the shuffling at the next epoch:
- The shuffling changes due to a "validator registry change".
- The shuffling changes due to
epochs_since_last_registry_update
being an exact power of 2 greater than 1. - The shuffling remains the same (i.e. the validator is in the same shard committee).
Either (2) or (3) occurs if (1) fails. The choice between (2) and (3) is deterministic based upon epochs_since_last_registry_update
.
When querying for assignments in the next epoch there are two options -- with and without a registry_change
-- which is the optional fourth parameter of the get_committee_assignment
.
get_committee_assignment
should be called at the start of each epoch to get the assignment for the next epoch (current_epoch + 1
). A validator should always plan for assignments from both values of registry_change
unless the validator can concretely eliminate one of the options. Planning for future assignments involves noting at which future slot one might have to attest and propose and also which shard one should begin syncing (in phase 1+).
Specifically, a validator should call both get_committee_assignment(state, next_epoch, validator_index, registry_change=True)
and get_committee_assignment(state, next_epoch, validator_index, registry_change=False)
when checking for next epoch assignments.
How to avoid slashing
"Slashing" is the burning of some amount of validator funds and immediate ejection from the active validator set. In Phase 0, there are two ways in which funds can be slashed -- proposer slashing and attester slashing. Although being slashed has serious repercussions, it is simple enough to avoid being slashed all together by remaining consistent with respect to the messages a validator has previously signed.
Note: Signed data must be within a sequential Fork
context to conflict. Messages cannot be slashed across diverging forks. If the previous fork version is 1 and the chain splits into fork 2 and 102, messages from 1 can slashable against messages in forks 1, 2, and 102. Messages in 2 cannot be slashable against messages in 102 and vice versa.
Proposer slashing
To avoid "proposer slashings", a validator must not sign two conflicting ProposalSignedData
where conflicting is defined as having the same slot
and shard
but a different block_root
. In phase 0, proposals are only made for the beacon chain (shard == BEACON_CHAIN_SHARD_NUMBER
).
In phase 0, as long as the validator does not sign two different beacon chain proposals for the same slot, the validator is safe against proposer slashings.
Specifically, when signing an BeaconBlock
, a validator should perform the following steps in the following order:
- Save a record to hard disk that an beacon block has been signed for the
slot=slot
andshard=BEACON_CHAIN_SHARD_NUMBER
. - Generate and broadcast the block.
If the software crashes at some point within this routine, then when the validator comes back online the hard disk has the record of the potentially signed/broadcast block and can effectively avoid slashing.
Attester slashing
To avoid "attester slashings", a validator must not sign two conflicting AttestationData
objects where conflicting is defined as a set of two attestations that satisfy either is_double_vote
or is_surround_vote
.
Specifically, when signing an Attestation
, a validator should perform the following steps in the following order:
- Save a record to hard disk that an attestation has been signed for source --
attestation_data.justified_epoch
-- and target --slot_to_epoch(attestation_data.slot)
. - Generate and broadcast attestation.
If the software crashes at some point within this routine, then when the validator comes back online the hard disk has the record of the potentially signed/broadcast attestation and can effectively avoid slashing.