11 KiB
SimpleSerialize (SSZ)
Notice: This document is a work-in-progress describing typing, serialization, and Merkleization of Eth 2.0 objects.
Table of contents
Constants
Name | Value | Description |
---|---|---|
BYTES_PER_CHUNK |
32 |
Number of bytes per chunk. |
BYTES_PER_LENGTH_OFFSET |
4 |
Number of bytes per serialized length offset. |
BITS_PER_BYTE |
8 |
Number of bits per byte. |
Typing
Basic types
uintN
:N
-bit unsigned integer (whereN in [8, 16, 32, 64, 128, 256]
)boolean
:True
orFalse
Composite types
- container: ordered heterogeneous collection of values
- python dataclass notation with key-type pairs, e.g.
class ContainerExample(Container): foo: uint64 bar: boolean
- vector: ordered fixed-length homogeneous collection, with
N
values- notation
Vector[type, N]
, e.g.Vector[uint64, N]
- notation
- list: ordered variable-length homogeneous collection, limited to
N
values- notation
List[type, N]
, e.g.List[uint64, N]
- notation
- bitvector: ordered fixed-length collection of
boolean
values, withN
bits- notation
Bitvector[N]
- notation
- bitlist: ordered variable-length collection of
boolean
values, limited toN
bits- notation
Bitlist[N]
- notation
- union: union type containing one of the given subtypes
- notation
Union[type_1, type_2, ...]
, e.g.union[null, uint64]
- notation
Variable-size and fixed-size
We recursively define "variable-size" types to be lists, unions, Bitlist
and all types that contain a variable-size type. All other types are said to be "fixed-size".
Aliases
For convenience we alias:
bit
toboolean
byte
touint8
(this is a basic type)BytesN
toVector[byte, N]
(this is not a basic type)null
:{}
, i.e. the empty container
Default values
The default value of a type upon initialization is recursively defined using 0
for uintN
, False
for boolean
and the elements of Bitvector
, and []
for lists and Bitlist
. Unions default to the first type in the union (with type index zero), which is null
if present in the union.
is_empty
An SSZ object is called empty (and thus, is_empty(object)
returns true) if it is equal to the default value for that type.
Illegal types
Empty vector types (i.e. [subtype, 0]
for some subtype
) are not legal. The null
type is only legal as the first type in a union subtype (i.e. with type index zero).
Serialization
We recursively define the serialize
function which consumes an object value
(of the type specified) and returns a bytestring of type bytes
.
Note: In the function definitions below (serialize
, hash_tree_root
, signing_root
, is_variable_size
, etc.) objects implicitly carry their type.
uintN
assert N in [8, 16, 32, 64, 128, 256]
return value.to_bytes(N // BITS_PER_BYTE, "little")
boolean
assert value in (True, False)
return b"\x01" if value is True else b"\x00"
null
return b""
Bitvector[N]
as_integer = sum([value[i] << i for i in range(len(value))])
return as_integer.to_bytes((N + 7) // 8, "little")
Bitlist[N]
Note that from the offset coding, the length (in bytes) of the bitlist is known. An additional leading 1
bit is added so that the length in bits will also be known.
as_integer = (1 << len(value)) + sum([value[i] << i for i in range(len(value))])
return as_integer.to_bytes((as_integer.bit_length() + 7) // 8, "little")
Vectors, containers, lists, unions
# Recursively serialize
fixed_parts = [serialize(element) if not is_variable_size(element) else None for element in value]
variable_parts = [serialize(element) if is_variable_size(element) else b"" for element in value]
# Compute and check lengths
fixed_lengths = [len(part) if part != None else BYTES_PER_LENGTH_OFFSET for part in fixed_parts]
variable_lengths = [len(part) for part in variable_parts]
assert sum(fixed_lengths + variable_lengths) < 2**(BYTES_PER_LENGTH_OFFSET * BITS_PER_BYTE)
# Interleave offsets of variable-size parts with fixed-size parts
variable_offsets = [serialize(sum(fixed_lengths + variable_lengths[:i])) for i in range(len(value))]
fixed_parts = [part if part != None else variable_offsets[i] for i, part in enumerate(fixed_parts)]
# Return the concatenation of the fixed-size parts (offsets interleaved) with the variable-size parts
return b"".join(fixed_parts + variable_parts)
If value
is a union type:
Define value as an object that has properties value.value
with the contained value, and value.type_index
which indexes the type.
serialized_bytes = serialize(value.value)
serialized_type_index = value.type_index.to_bytes(BYTES_PER_LENGTH_OFFSET, "little")
return serialized_type_index + serialized_bytes
Deserialization
Because serialization is an injective function (i.e. two distinct objects of the same type will serialize to different values) any bytestring has at most one object it could deserialize to. Efficient algorithms for computing this object can be found in the implementations.
Note that deserialization requires hardening against invalid inputs. A non-exhaustive list:
- Offsets: out of order, out of range, mismatching minimum element size.
- Scope: Extra unused bytes, not aligned with element size.
- More elements than a list limit allows. Part of enforcing consensus.
Merkleization
We first define helper functions:
chunk_count(type)
: calculate the amount of leafs for merkleization of the type.- all basic types:
1
- bitlists and bitvectors:
(N + 255) // 256
(dividing by chunk size, rounding up) - lists and vectors of basic types:
N * item_length(elem_type) + 31) // 32
(dividing by chunk size, rounding up) - lists and vectors of composite types:
N
- containers:
len(fields)
- all basic types:
bitfield_bytes(bits)
: return the bits of the bitlist or bitvector, packed in bytes, aligned to the start. Exclusive length-delimiting bit for bitlists.pack
: Given ordered objects of the same basic type, serialize them, pack them intoBYTES_PER_CHUNK
-byte chunks, right-pad the last chunk with zero bytes, and return the chunks.next_pow_of_two(i)
: get the next power of 2 ofi
, if not already a power of 2, with 0 mapping to 1. Examples:0->1, 1->1, 2->2, 3->4, 4->4, 6->8, 9->16
merkleize(chunks, limit=None)
: Given orderedBYTES_PER_CHUNK
-byte chunks, merkleize the chunks, and return the root:- The merkleization depends on the effective input, which can be padded/limited:
- if no limit: pad the
chunks
with zeroed chunks tonext_pow_of_two(len(chunks))
(virtually for memory efficiency). - if
limit > len(chunks)
, pad thechunks
with zeroed chunks tonext_pow_of_two(limit)
(virtually for memory efficiency). - if
limit < len(chunks)
: do not merkleize, input exceeds limit. Raise an error instead.
- if no limit: pad the
- Then, merkleize the chunks (empty input is padded to 1 zero chunk):
- If
1
chunk: the root is the chunk itself. - If
> 1
chunks: merkleize as binary tree.
- If
- The merkleization depends on the effective input, which can be padded/limited:
mix_in_length
: Given a Merkle rootroot
and a lengthlength
("uint256"
little-endian serialization) returnhash(root + length)
.mix_in_type
: Given a Merkle rootroot
and a type_indextype_index
("uint256"
little-endian serialization) returnhash(root + type_index)
.
We now define Merkleization hash_tree_root(value)
of an object value
recursively:
merkleize(pack(value))
ifvalue
is a basic object or a vector of basic objects.merkleize(bitfield_bytes(value), limit=chunk_count(type))
ifvalue
is a bitvector.mix_in_length(merkleize(pack(value), limit=chunk_count(type)), len(value))
ifvalue
is a list of basic objects.mix_in_length(merkleize(bitfield_bytes(value), limit=chunk_count(type)), len(value))
ifvalue
is a bitlist.merkleize([hash_tree_root(element) for element in value])
ifvalue
is a vector of composite objects or a container.mix_in_length(merkleize([hash_tree_root(element) for element in value], limit=chunk_count(type)), len(value))
ifvalue
is a list of composite objects.mix_in_type(merkleize(value.value), value.type_index)
ifvalue
is of union type.
Self-signed containers
Let value
be a self-signed container object. The convention is that the signature (e.g. a "bytes96"
BLS12-381 signature) be the last field of value
. Further, the signed message for value
is signing_root(value) = hash_tree_root(truncate_last(value))
where truncate_last
truncates the last element of value
.
Implementations
Language | Project | Maintainer | Implementation |
---|---|---|---|
Python | Ethereum 2.0 | Ethereum Foundation | https://github.com/ethereum/py-ssz |
Rust | Lighthouse | Sigma Prime | https://github.com/sigp/lighthouse/tree/master/eth2/utils/ssz |
Nim | Nimbus | Status | https://github.com/status-im/nim-beacon-chain/blob/master/beacon_chain/ssz.nim |
Rust | Shasper | ParityTech | https://github.com/paritytech/shasper/tree/master/utils/ssz |
TypeScript | Lodestar | ChainSafe Systems | https://github.com/ChainSafe/ssz-js |
Java | Cava | ConsenSys | https://www.github.com/ConsenSys/cava/tree/master/ssz |
Go | Prysm | Prysmatic Labs | https://github.com/prysmaticlabs/go-ssz |
Swift | Yeeth | Dean Eigenmann | https://github.com/yeeth/SimpleSerialize.swift |
C# | Jordan Andrews | https://github.com/codingupastorm/csharp-ssz | |
C++ | Jiyun Kim | https://github.com/NAKsir-melody/cpp_ssz |