70 KiB
Ethereum 2.0 Phase 0 -- The Beacon Chain
NOTICE: This document is a work in progress for researchers and implementers.
Table of contents
- Ethereum 2.0 Phase 0 -- The Beacon Chain
- Table of contents
- Introduction
- Notation
- Terminology
- Constants
- Data structures
- Custom Types
- Helper functions
xor
hash
hash_tree_root
signing_root
slot_to_epoch
get_previous_epoch
get_current_epoch
get_epoch_start_slot
is_active_validator
is_slashable_validator
get_active_validator_indices
increase_balance
decrease_balance
get_epoch_committee_count
get_shard_delta
get_epoch_start_shard
get_attestation_slot
get_block_root_at_slot
get_block_root
get_randao_mix
get_active_index_root
generate_seed
get_beacon_proposer_index
verify_merkle_branch
get_shuffled_index
compute_committee
get_crosslink_committee
get_attesting_indices
int_to_bytes1
,int_to_bytes2
, ...bytes_to_int
get_total_balance
get_domain
get_bitfield_bit
verify_bitfield
convert_to_indexed
verify_indexed_attestation
is_slashable_attestation_data
integer_squareroot
get_delayed_activation_exit_epoch
get_churn_limit
bls_verify
bls_verify_multiple
bls_aggregate_pubkeys
- Routines for updating validator status
- On genesis
- Beacon chain state transition function
Introduction
This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.
At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0, the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when Ethereum 1.0 deposit receipts are processed by the beacon chain, the activation balance is reached, and a queuing process is completed. Exit is either voluntary or done forcibly as a penalty for misbehavior.
The primary source of load on the beacon chain is "attestations". Attestations are simultaneously availability votes for a shard block and proof-of-stake votes for a beacon block. A sufficient number of attestations for the same shard block create a "crosslink", confirming the shard segment up to that shard block into the beacon chain. Crosslinks also serve as infrastructure for asynchronous cross-shard communication.
Notation
Code snippets appearing in this style
are to be interpreted as Python code.
Terminology
- Validator - a registered participant in the beacon chain. You can become one by sending ether into the Ethereum 1.0 deposit contract.
- Active validator - an active participant in the Ethereum 2.0 consensus invited to, among other things, propose and attest to blocks and vote for crosslinks.
- Committee - a (pseudo-) randomly sampled subset of active validators. When a committee is referred to collectively, as in "this committee attests to X", this is assumed to mean "some subset of that committee that contains enough validators that the protocol recognizes it as representing the committee".
- Proposer - the validator that creates a beacon chain block.
- Attester - a validator that is part of a committee that needs to sign off on a beacon chain block while simultaneously creating a link (crosslink) to a recent shard block on a particular shard chain.
- Beacon chain - the central PoS chain that is the base of the sharding system.
- Shard chain - one of the chains on which user transactions take place and account data is stored.
- Block root - a 32-byte Merkle root of a beacon chain block or shard chain block. Previously called "block hash".
- Crosslink - a set of signatures from a committee attesting to a block in a shard chain that can be included into the beacon chain. Crosslinks are the main means by which the beacon chain "learns about" the updated state of shard chains.
- Slot - a period during which one proposer has the ability to create a beacon chain block and some attesters have the ability to make attestations.
- Epoch - an aligned span of slots during which all validators get exactly one chance to make an attestation.
- Finalized, justified - see the Casper FFG paper.
- Withdrawal period - the number of slots between a validator exit and the validator balance being withdrawable.
- Genesis time - the Unix time of the genesis beacon chain block at slot 0.
Constants
Note: the default mainnet values for the constants are included here for spec-design purposes.
The different configurations for mainnet, testnets, and yaml-based testing can be found in the configs/constant_presets/
directory.
These configurations are updated for releases, but may be out of sync during dev
changes.
Misc
Name | Value |
---|---|
SHARD_COUNT |
2**10 (= 1,024) |
TARGET_COMMITTEE_SIZE |
2**7 (= 128) |
MAX_INDICES_PER_ATTESTATION |
2**12 (= 4,096) |
MIN_PER_EPOCH_CHURN_LIMIT |
2**2 (= 4) |
CHURN_LIMIT_QUOTIENT |
2**16 (= 65,536) |
BASE_REWARDS_PER_EPOCH |
5 |
SHUFFLE_ROUND_COUNT |
90 |
- For the safety of crosslinks
TARGET_COMMITTEE_SIZE
exceeds the recommended minimum committee size of 111; with sufficient active validators (at leastSLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE
), the shuffling algorithm ensures committee sizes of at leastTARGET_COMMITTEE_SIZE
. (Unbiasable randomness with a Verifiable Delay Function (VDF) will improve committee robustness and lower the safe minimum committee size.)
Deposit contract
Name | Value |
---|---|
DEPOSIT_CONTRACT_TREE_DEPTH |
2**5 (= 32) |
Gwei values
Name | Value | Unit |
---|---|---|
MIN_DEPOSIT_AMOUNT |
2**0 * 10**9 (= 1,000,000,000) |
Gwei |
MAX_EFFECTIVE_BALANCE |
2**5 * 10**9 (= 32,000,000,000) |
Gwei |
EJECTION_BALANCE |
2**4 * 10**9 (= 16,000,000,000) |
Gwei |
EFFECTIVE_BALANCE_INCREMENT |
2**0 * 10**9 (= 1,000,000,000) |
Gwei |
Initial values
Name | Value |
---|---|
GENESIS_SLOT |
0 |
GENESIS_EPOCH |
0 |
FAR_FUTURE_EPOCH |
2**64 - 1 |
ZERO_HASH |
int_to_bytes32(0) |
BLS_WITHDRAWAL_PREFIX_BYTE |
int_to_bytes1(0) |
Time parameters
Name | Value | Unit | Duration |
---|---|---|---|
MIN_ATTESTATION_INCLUSION_DELAY |
2**2 (= 4) |
slots | 24 seconds |
SLOTS_PER_EPOCH |
2**6 (= 64) |
slots | 6.4 minutes |
MIN_SEED_LOOKAHEAD |
2**0 (= 1) |
epochs | 6.4 minutes |
ACTIVATION_EXIT_DELAY |
2**2 (= 4) |
epochs | 25.6 minutes |
SLOTS_PER_ETH1_VOTING_PERIOD |
2**10 (= 1,024) |
slots | ~1.7 hours |
SLOTS_PER_HISTORICAL_ROOT |
2**13 (= 8,192) |
slots | ~13 hours |
MIN_VALIDATOR_WITHDRAWABILITY_DELAY |
2**8 (= 256) |
epochs | ~27 hours |
PERSISTENT_COMMITTEE_PERIOD |
2**11 (= 2,048) |
epochs | 9 days |
MAX_CROSSLINK_EPOCHS |
2**6 (= 64) |
epochs | ~7 hours |
MIN_EPOCHS_TO_INACTIVITY_PENALTY |
2**2 (= 4) |
epochs | 25.6 minutes |
MAX_CROSSLINK_EPOCHS
should be a small constant timesSHARD_COUNT // SLOTS_PER_EPOCH
State list lengths
Name | Value | Unit | Duration |
---|---|---|---|
LATEST_RANDAO_MIXES_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
LATEST_ACTIVE_INDEX_ROOTS_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
LATEST_SLASHED_EXIT_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
Reward and penalty quotients
Name | Value |
---|---|
BASE_REWARD_QUOTIENT |
2**5 (= 32) |
WHISTLEBLOWING_REWARD_QUOTIENT |
2**9 (= 512) |
PROPOSER_REWARD_QUOTIENT |
2**3 (= 8) |
INACTIVITY_PENALTY_QUOTIENT |
2**25 (= 33,554,432) |
MIN_SLASHING_PENALTY_QUOTIENT |
2**5 (= 32) |
- The
BASE_REWARD_QUOTIENT
is NOT final. Once all other protocol details are finalized it will be adjusted, to target a theoretical maximum total issuance of2**21
ETH per year if2**27
ETH is validating (and therefore2**20
per year if2**25
ETH is validating, etc etc) - The
INACTIVITY_PENALTY_QUOTIENT
equalsINVERSE_SQRT_E_DROP_TIME**2
whereINVERSE_SQRT_E_DROP_TIME := 2**12 epochs
(~18 days) is the time it takes the inactivity penalty to reduce the balance of non-participating validators to about1/sqrt(e) ~= 60.6%
. Indeed, the balance retained by offline validators aftern
epochs is about(1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(n**2/2)
so afterINVERSE_SQRT_E_DROP_TIME
epochs it is roughly(1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(INACTIVITY_PENALTY_QUOTIENT/2) ~= 1/sqrt(e)
.
Max operations per block
Name | Value |
---|---|
MAX_PROPOSER_SLASHINGS |
2**4 (= 16) |
MAX_ATTESTER_SLASHINGS |
2**0 (= 1) |
MAX_ATTESTATIONS |
2**7 (= 128) |
MAX_DEPOSITS |
2**4 (= 16) |
MAX_VOLUNTARY_EXITS |
2**4 (= 16) |
MAX_TRANSFERS |
0 |
Signature domains
Name | Value |
---|---|
DOMAIN_BEACON_PROPOSER |
0 |
DOMAIN_RANDAO |
1 |
DOMAIN_ATTESTATION |
2 |
DOMAIN_DEPOSIT |
3 |
DOMAIN_VOLUNTARY_EXIT |
4 |
DOMAIN_TRANSFER |
5 |
Data structures
The following data structures are defined as SimpleSerialize (SSZ) objects.
The types are defined topologically to aid in facilitating an executable version of the spec.
Misc dependencies
Fork
{
# Previous fork version
'previous_version': 'bytes4',
# Current fork version
'current_version': 'bytes4',
# Fork epoch number
'epoch': 'uint64',
}
Crosslink
{
# Shard number
'shard': 'uint64',
# Epoch number
'epoch': 'uint64',
# Root of the previous crosslink
'previous_crosslink_root': 'bytes32',
# Root of the crosslinked shard data since the previous crosslink
'crosslink_data_root': 'bytes32',
}
Eth1Data
{
# Root of the deposit tree
'deposit_root': 'bytes32',
# Total number of deposits
'deposit_count': 'uint64',
# Block hash
'block_hash': 'bytes32',
}
AttestationData
{
# LMD GHOST vote
'beacon_block_root': 'bytes32',
# FFG vote
'source_epoch': 'uint64',
'source_root': 'bytes32',
'target_epoch': 'uint64',
'target_root': 'bytes32',
# Crosslink vote
'crosslink': Crosslink,
}
AttestationDataAndCustodyBit
{
# Attestation data
'data': AttestationData,
# Custody bit
'custody_bit': 'bool',
}
IndexedAttestation
{
# Validator indices
'custody_bit_0_indices': ['uint64'],
'custody_bit_1_indices': ['uint64'],
# Attestation data
'data': AttestationData,
# Aggregate signature
'signature': 'bytes96',
}
DepositData
{
# BLS pubkey
'pubkey': 'bytes48',
# Withdrawal credentials
'withdrawal_credentials': 'bytes32',
# Amount in Gwei
'amount': 'uint64',
# Container self-signature
'signature': 'bytes96',
}
BeaconBlockHeader
{
'slot': 'uint64',
'previous_block_root': 'bytes32',
'state_root': 'bytes32',
'block_body_root': 'bytes32',
'signature': 'bytes96',
}
Validator
{
# BLS public key
'pubkey': 'bytes48',
# Withdrawal credentials
'withdrawal_credentials': 'bytes32',
# Epoch when became eligible for activation
'activation_eligibility_epoch': 'uint64',
# Epoch when validator activated
'activation_epoch': 'uint64',
# Epoch when validator exited
'exit_epoch': 'uint64',
# Epoch when validator is eligible to withdraw
'withdrawable_epoch': 'uint64',
# Was the validator slashed
'slashed': 'bool',
# Effective balance
'effective_balance': 'uint64',
}
PendingAttestation
{
# Attester aggregation bitfield
'aggregation_bitfield': 'bytes',
# Attestation data
'data': AttestationData,
# Inclusion delay
'inclusion_delay': 'uint64',
# Proposer index
'proposer_index': 'uint64',
}
HistoricalBatch
{
# Block roots
'block_roots': ['bytes32', SLOTS_PER_HISTORICAL_ROOT],
# State roots
'state_roots': ['bytes32', SLOTS_PER_HISTORICAL_ROOT],
}
Beacon operations
ProposerSlashing
{
# Proposer index
'proposer_index': 'uint64',
# First block header
'header_1': BeaconBlockHeader,
# Second block header
'header_2': BeaconBlockHeader,
}
AttesterSlashing
{
# First attestation
'attestation_1': IndexedAttestation,
# Second attestation
'attestation_2': IndexedAttestation,
}
Attestation
{
# Attester aggregation bitfield
'aggregation_bitfield': 'bytes',
# Attestation data
'data': AttestationData,
# Custody bitfield
'custody_bitfield': 'bytes',
# BLS aggregate signature
'signature': 'bytes96',
}
Deposit
{
# Branch in the deposit tree
'proof': ['bytes32', DEPOSIT_CONTRACT_TREE_DEPTH],
# Index in the deposit tree
'index': 'uint64',
# Data
'data': DepositData,
}
VoluntaryExit
{
# Minimum epoch for processing exit
'epoch': 'uint64',
# Index of the exiting validator
'validator_index': 'uint64',
# Validator signature
'signature': 'bytes96',
}
Transfer
{
# Sender index
'sender': 'uint64',
# Recipient index
'recipient': 'uint64',
# Amount in Gwei
'amount': 'uint64',
# Fee in Gwei for block proposer
'fee': 'uint64',
# Inclusion slot
'slot': 'uint64',
# Sender withdrawal pubkey
'pubkey': 'bytes48',
# Sender signature
'signature': 'bytes96',
}
Beacon blocks
BeaconBlockBody
{
'randao_reveal': 'bytes96',
'eth1_data': Eth1Data,
'graffiti': 'bytes32',
'proposer_slashings': [ProposerSlashing],
'attester_slashings': [AttesterSlashing],
'attestations': [Attestation],
'deposits': [Deposit],
'voluntary_exits': [VoluntaryExit],
'transfers': [Transfer],
}
BeaconBlock
{
# Header
'slot': 'uint64',
'previous_block_root': 'bytes32',
'state_root': 'bytes32',
'body': BeaconBlockBody,
'signature': 'bytes96',
}
Beacon state
BeaconState
{
# Misc
'slot': 'uint64',
'genesis_time': 'uint64',
'fork': Fork, # For versioning hard forks
# Validator registry
'validator_registry': [Validator],
'balances': ['uint64'],
# Randomness and committees
'latest_randao_mixes': ['bytes32', LATEST_RANDAO_MIXES_LENGTH],
'latest_start_shard': 'uint64',
# Finality
'previous_epoch_attestations': [PendingAttestation],
'current_epoch_attestations': [PendingAttestation],
'previous_justified_epoch': 'uint64',
'current_justified_epoch': 'uint64',
'previous_justified_root': 'bytes32',
'current_justified_root': 'bytes32',
'justification_bitfield': 'uint64',
'finalized_epoch': 'uint64',
'finalized_root': 'bytes32',
# Recent state
'current_crosslinks': [Crosslink, SHARD_COUNT],
'previous_crosslinks': [Crosslink, SHARD_COUNT],
'latest_block_roots': ['bytes32', SLOTS_PER_HISTORICAL_ROOT],
'latest_state_roots': ['bytes32', SLOTS_PER_HISTORICAL_ROOT],
'latest_active_index_roots': ['bytes32', LATEST_ACTIVE_INDEX_ROOTS_LENGTH],
'latest_slashed_balances': ['uint64', LATEST_SLASHED_EXIT_LENGTH], # Balances slashed at every withdrawal period
'latest_block_header': BeaconBlockHeader, # `latest_block_header.state_root == ZERO_HASH` temporarily
'historical_roots': ['bytes32'],
# Ethereum 1.0 chain data
'latest_eth1_data': Eth1Data,
'eth1_data_votes': [Eth1Data],
'deposit_index': 'uint64',
}
Custom Types
We define the following Python custom types for type hinting and readability:
Name | SSZ equivalent | Description |
---|---|---|
Slot |
uint64 |
a slot number |
Epoch |
uint64 |
an epoch number |
Shard |
uint64 |
a shard number |
ValidatorIndex |
uint64 |
a validator registry index |
Gwei |
uint64 |
an amount in Gwei |
Bytes32 |
bytes32 |
32 bytes of binary data |
BLSPubkey |
bytes48 |
a BLS12-381 public key |
BLSSignature |
bytes96 |
a BLS12-381 signature |
Helper functions
Note: The definitions below are for specification purposes and are not necessarily optimal implementations.
xor
def xor(bytes1: Bytes32, bytes2: Bytes32) -> Bytes32:
return bytes(a ^ b for a, b in zip(bytes1, bytes2))
hash
The hash
function is SHA256.
Note: We aim to migrate to a S[T/N]ARK-friendly hash function in a future Ethereum 2.0 deployment phase.
hash_tree_root
def hash_tree_root(object: SSZSerializable) -> Bytes32
is a function for hashing objects into a single root utilizing a hash tree structure. hash_tree_root
is defined in the SimpleSerialize spec.
signing_root
def signing_root(object: SSZContainer) -> Bytes32
is a function defined in the SimpleSerialize spec to compute signing messages.
slot_to_epoch
def slot_to_epoch(slot: Slot) -> Epoch:
"""
Return the epoch number of the given ``slot``.
"""
return slot // SLOTS_PER_EPOCH
get_previous_epoch
def get_previous_epoch(state: BeaconState) -> Epoch:
"""`
Return the previous epoch of the given ``state``.
Return the current epoch if it's genesis epoch.
"""
current_epoch = get_current_epoch(state)
return (current_epoch - 1) if current_epoch > GENESIS_EPOCH else current_epoch
get_current_epoch
def get_current_epoch(state: BeaconState) -> Epoch:
"""
Return the current epoch of the given ``state``.
"""
return slot_to_epoch(state.slot)
get_epoch_start_slot
def get_epoch_start_slot(epoch: Epoch) -> Slot:
"""
Return the starting slot of the given ``epoch``.
"""
return epoch * SLOTS_PER_EPOCH
is_active_validator
def is_active_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is active.
"""
return validator.activation_epoch <= epoch < validator.exit_epoch
is_slashable_validator
def is_slashable_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is slashable.
"""
return validator.slashed is False and (validator.activation_epoch <= epoch < validator.withdrawable_epoch)
get_active_validator_indices
def get_active_validator_indices(state: BeaconState, epoch: Epoch) -> List[ValidatorIndex]:
"""
Get active validator indices at ``epoch``.
"""
return [i for i, v in enumerate(state.validator_registry) if is_active_validator(v, epoch)]
increase_balance
def increase_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Increase validator balance by ``delta``.
"""
state.balances[index] += delta
decrease_balance
def decrease_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Decrease validator balance by ``delta`` with underflow protection.
"""
state.balances[index] = 0 if delta > state.balances[index] else state.balances[index] - delta
get_epoch_committee_count
def get_epoch_committee_count(state: BeaconState, epoch: Epoch) -> int:
"""
Return the number of committees at ``epoch``.
"""
active_validator_indices = get_active_validator_indices(state, epoch)
return max(
1,
min(
SHARD_COUNT // SLOTS_PER_EPOCH,
len(active_validator_indices) // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE,
)
) * SLOTS_PER_EPOCH
get_shard_delta
def get_shard_delta(state: BeaconState, epoch: Epoch) -> int:
"""
Return the number of shards to increment ``state.latest_start_shard`` during ``epoch``.
"""
return min(get_epoch_committee_count(state, epoch), SHARD_COUNT - SHARD_COUNT // SLOTS_PER_EPOCH)
get_epoch_start_shard
def get_epoch_start_shard(state: BeaconState, epoch: Epoch) -> Shard:
assert epoch <= get_current_epoch(state) + 1
check_epoch = get_current_epoch(state) + 1
shard = (state.latest_start_shard + get_shard_delta(state, get_current_epoch(state))) % SHARD_COUNT
while check_epoch > epoch:
check_epoch -= 1
shard = (shard + SHARD_COUNT - get_shard_delta(state, check_epoch)) % SHARD_COUNT
return shard
get_attestation_slot
def get_attestation_slot(state: BeaconState, attestation: Attestation) -> Slot:
epoch = attestation.data.target_epoch
committee_count = get_epoch_committee_count(state, epoch)
offset = (attestation.data.crosslink.shard + SHARD_COUNT - get_epoch_start_shard(state, epoch)) % SHARD_COUNT
return get_epoch_start_slot(epoch) + offset // (committee_count // SLOTS_PER_EPOCH)
get_block_root_at_slot
def get_block_root_at_slot(state: BeaconState,
slot: Slot) -> Bytes32:
"""
Return the block root at a recent ``slot``.
"""
assert slot < state.slot <= slot + SLOTS_PER_HISTORICAL_ROOT
return state.latest_block_roots[slot % SLOTS_PER_HISTORICAL_ROOT]
get_block_root
def get_block_root(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the block root at a recent ``epoch``.
"""
return get_block_root_at_slot(state, get_epoch_start_slot(epoch))
get_randao_mix
def get_randao_mix(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the randao mix at a recent ``epoch``.
``epoch`` expected to be between (current_epoch - LATEST_RANDAO_MIXES_LENGTH, current_epoch].
"""
return state.latest_randao_mixes[epoch % LATEST_RANDAO_MIXES_LENGTH]
get_active_index_root
def get_active_index_root(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the index root at a recent ``epoch``.
``epoch`` expected to be between
(current_epoch - LATEST_ACTIVE_INDEX_ROOTS_LENGTH + ACTIVATION_EXIT_DELAY, current_epoch + ACTIVATION_EXIT_DELAY].
"""
return state.latest_active_index_roots[epoch % LATEST_ACTIVE_INDEX_ROOTS_LENGTH]
generate_seed
def generate_seed(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Generate a seed for the given ``epoch``.
"""
return hash(
get_randao_mix(state, epoch + LATEST_RANDAO_MIXES_LENGTH - MIN_SEED_LOOKAHEAD) +
get_active_index_root(state, epoch) +
int_to_bytes32(epoch)
)
get_beacon_proposer_index
def get_beacon_proposer_index(state: BeaconState) -> ValidatorIndex:
"""
Return the current beacon proposer index.
"""
epoch = get_current_epoch(state)
committees_per_slot = get_epoch_committee_count(state, epoch) // SLOTS_PER_EPOCH
offset = committees_per_slot * (state.slot % SLOTS_PER_EPOCH)
shard = (get_epoch_start_shard(state, epoch) + offset) % SHARD_COUNT
first_committee = get_crosslink_committee(state, epoch, shard)
MAX_RANDOM_BYTE = 2**8 - 1
seed = generate_seed(state, epoch)
i = 0
while True:
candidate_index = first_committee[(epoch + i) % len(first_committee)]
random_byte = hash(seed + int_to_bytes8(i // 32))[i % 32]
effective_balance = state.validator_registry[candidate_index].effective_balance
if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:
return candidate_index
i += 1
verify_merkle_branch
def verify_merkle_branch(leaf: Bytes32, proof: List[Bytes32], depth: int, index: int, root: Bytes32) -> bool:
"""
Verify that the given ``leaf`` is on the merkle branch ``proof``
starting with the given ``root``.
"""
value = leaf
for i in range(depth):
if index // (2**i) % 2:
value = hash(proof[i] + value)
else:
value = hash(value + proof[i])
return value == root
get_shuffled_index
def get_shuffled_index(index: ValidatorIndex, index_count: int, seed: Bytes32) -> ValidatorIndex:
"""
Return the shuffled validator index corresponding to ``seed`` (and ``index_count``).
"""
assert index < index_count
assert index_count <= 2**40
# Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
# See the 'generalized domain' algorithm on page 3
for round in range(SHUFFLE_ROUND_COUNT):
pivot = bytes_to_int(hash(seed + int_to_bytes1(round))[0:8]) % index_count
flip = (pivot - index) % index_count
position = max(index, flip)
source = hash(seed + int_to_bytes1(round) + int_to_bytes4(position // 256))
byte = source[(position % 256) // 8]
bit = (byte >> (position % 8)) % 2
index = flip if bit else index
return index
compute_committee
def compute_committee(indices: List[ValidatorIndex], seed: Bytes32, index: int, count: int) -> List[ValidatorIndex]:
start = (len(indices) * index) // count
end = (len(indices) * (index + 1)) // count
return [indices[get_shuffled_index(i, len(indices), seed)] for i in range(start, end)]
get_crosslink_committee
def get_crosslink_committee(state: BeaconState, epoch: Epoch, shard: Shard) -> List[ValidatorIndex]:
return compute_committee(
indices=get_active_validator_indices(state, epoch),
seed=generate_seed(state, epoch),
index=(shard + SHARD_COUNT - get_epoch_start_shard(state, epoch)) % SHARD_COUNT,
count=get_epoch_committee_count(state, epoch),
)
get_attesting_indices
def get_attesting_indices(state: BeaconState,
attestation_data: AttestationData,
bitfield: bytes) -> List[ValidatorIndex]:
"""
Return the sorted attesting indices corresponding to ``attestation_data`` and ``bitfield``.
"""
committee = get_crosslink_committee(state, attestation_data.target_epoch, attestation_data.crosslink.shard)
assert verify_bitfield(bitfield, len(committee))
return sorted([index for i, index in enumerate(committee) if get_bitfield_bit(bitfield, i) == 0b1])
int_to_bytes1
, int_to_bytes2
, ...
int_to_bytes1(x): return x.to_bytes(1, 'little')
, int_to_bytes2(x): return x.to_bytes(2, 'little')
, and so on for all integers, particularly 1, 2, 3, 4, 8, 32, 48, 96.
bytes_to_int
def bytes_to_int(data: bytes) -> int:
return int.from_bytes(data, 'little')
get_total_balance
def get_total_balance(state: BeaconState, indices: List[ValidatorIndex]) -> Gwei:
"""
Return the combined effective balance of an array of ``validators``.
"""
return sum([state.validator_registry[index].effective_balance for index in indices])
get_domain
def get_domain(state: BeaconState,
domain_type: int,
message_epoch: int=None) -> int:
"""
Return the signature domain (fork version concatenated with domain type) of a message.
"""
epoch = get_current_epoch(state) if message_epoch is None else message_epoch
fork_version = state.fork.previous_version if epoch < state.fork.epoch else state.fork.current_version
return bytes_to_int(fork_version + int_to_bytes4(domain_type))
get_bitfield_bit
def get_bitfield_bit(bitfield: bytes, i: int) -> int:
"""
Extract the bit in ``bitfield`` at position ``i``.
"""
return (bitfield[i // 8] >> (i % 8)) % 2
verify_bitfield
def verify_bitfield(bitfield: bytes, committee_size: int) -> bool:
"""
Verify ``bitfield`` against the ``committee_size``.
"""
if len(bitfield) != (committee_size + 7) // 8:
return False
# Check `bitfield` is padded with zero bits only
for i in range(committee_size, len(bitfield) * 8):
if get_bitfield_bit(bitfield, i) == 0b1:
return False
return True
convert_to_indexed
def convert_to_indexed(state: BeaconState, attestation: Attestation) -> IndexedAttestation:
"""
Convert ``attestation`` to (almost) indexed-verifiable form.
"""
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bitfield)
custody_bit_1_indices = get_attesting_indices(state, attestation.data, attestation.custody_bitfield)
custody_bit_0_indices = [index for index in attesting_indices if index not in custody_bit_1_indices]
return IndexedAttestation(
custody_bit_0_indices=custody_bit_0_indices,
custody_bit_1_indices=custody_bit_1_indices,
data=attestation.data,
signature=attestation.signature,
)
verify_indexed_attestation
def verify_indexed_attestation(state: BeaconState, indexed_attestation: IndexedAttestation) -> bool:
"""
Verify validity of ``indexed_attestation`` fields.
"""
custody_bit_0_indices = indexed_attestation.custody_bit_0_indices
custody_bit_1_indices = indexed_attestation.custody_bit_1_indices
# Ensure no duplicate indices across custody bits
assert len(set(custody_bit_0_indices).intersection(set(custody_bit_1_indices))) == 0
if len(custody_bit_1_indices) > 0: # [TO BE REMOVED IN PHASE 1]
return False
if not (1 <= len(custody_bit_0_indices) + len(custody_bit_1_indices) <= MAX_INDICES_PER_ATTESTATION):
return False
if custody_bit_0_indices != sorted(custody_bit_0_indices):
return False
if custody_bit_1_indices != sorted(custody_bit_1_indices):
return False
return bls_verify_multiple(
pubkeys=[
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in custody_bit_0_indices]),
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in custody_bit_1_indices]),
],
message_hashes=[
hash_tree_root(AttestationDataAndCustodyBit(data=indexed_attestation.data, custody_bit=0b0)),
hash_tree_root(AttestationDataAndCustodyBit(data=indexed_attestation.data, custody_bit=0b1)),
],
signature=indexed_attestation.signature,
domain=get_domain(state, DOMAIN_ATTESTATION, indexed_attestation.data.target_epoch),
)
is_slashable_attestation_data
def is_slashable_attestation_data(data_1: AttestationData, data_2: AttestationData) -> bool:
"""
Check if ``data_1`` and ``data_2`` are slashable according to Casper FFG rules.
"""
return (
# Double vote
(data_1 != data_2 and data_1.target_epoch == data_2.target_epoch) or
# Surround vote
(data_1.source_epoch < data_2.source_epoch and data_2.target_epoch < data_1.target_epoch)
)
integer_squareroot
def integer_squareroot(n: int) -> int:
"""
The largest integer ``x`` such that ``x**2`` is less than or equal to ``n``.
"""
assert n >= 0
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
get_delayed_activation_exit_epoch
def get_delayed_activation_exit_epoch(epoch: Epoch) -> Epoch:
"""
Return the epoch at which an activation or exit triggered in ``epoch`` takes effect.
"""
return epoch + 1 + ACTIVATION_EXIT_DELAY
get_churn_limit
def get_churn_limit(state: BeaconState) -> int:
"""
Return the churn limit based on the active validator count.
"""
return max(
MIN_PER_EPOCH_CHURN_LIMIT,
len(get_active_validator_indices(state, get_current_epoch(state))) // CHURN_LIMIT_QUOTIENT
)
bls_verify
bls_verify
is a function for verifying a BLS signature, defined in the BLS Signature spec.
bls_verify_multiple
bls_verify_multiple
is a function for verifying a BLS signature constructed from multiple messages, defined in the BLS Signature spec.
bls_aggregate_pubkeys
bls_aggregate_pubkeys
is a function for aggregating multiple BLS public keys into a single aggregate key, defined in the BLS Signature spec.
Routines for updating validator status
Note: All functions in this section mutate state
.
initiate_validator_exit
def initiate_validator_exit(state: BeaconState, index: ValidatorIndex) -> None:
"""
Initiate the validator of the given ``index``.
"""
# Return if validator already initiated exit
validator = state.validator_registry[index]
if validator.exit_epoch != FAR_FUTURE_EPOCH:
return
# Compute exit queue epoch
exit_epochs = [v.exit_epoch for v in state.validator_registry if v.exit_epoch != FAR_FUTURE_EPOCH]
exit_queue_epoch = max(exit_epochs + [get_delayed_activation_exit_epoch(get_current_epoch(state))])
exit_queue_churn = len([v for v in state.validator_registry if v.exit_epoch == exit_queue_epoch])
if exit_queue_churn >= get_churn_limit(state):
exit_queue_epoch += 1
# Set validator exit epoch and withdrawable epoch
validator.exit_epoch = exit_queue_epoch
validator.withdrawable_epoch = validator.exit_epoch + MIN_VALIDATOR_WITHDRAWABILITY_DELAY
slash_validator
def slash_validator(state: BeaconState, slashed_index: ValidatorIndex, whistleblower_index: ValidatorIndex=None) -> None:
"""
Slash the validator with index ``slashed_index``.
"""
current_epoch = get_current_epoch(state)
initiate_validator_exit(state, slashed_index)
state.validator_registry[slashed_index].slashed = True
state.validator_registry[slashed_index].withdrawable_epoch = current_epoch + LATEST_SLASHED_EXIT_LENGTH
slashed_balance = state.validator_registry[slashed_index].effective_balance
state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH] += slashed_balance
proposer_index = get_beacon_proposer_index(state)
if whistleblower_index is None:
whistleblower_index = proposer_index
whistleblowing_reward = slashed_balance // WHISTLEBLOWING_REWARD_QUOTIENT
proposer_reward = whistleblowing_reward // PROPOSER_REWARD_QUOTIENT
increase_balance(state, proposer_index, proposer_reward)
increase_balance(state, whistleblower_index, whistleblowing_reward - proposer_reward)
decrease_balance(state, slashed_index, whistleblowing_reward)
On genesis
When enough full deposits have been made to the deposit contract, an Eth2Genesis
log is emitted. Construct a corresponding genesis_state
and genesis_block
as follows:
- Let
genesis_validator_deposits
be the list of deposits, ordered chronologically, up to and including the deposit that triggered theEth2Genesis
log. - Let
genesis_time
be the timestamp specified in theEth2Genesis
log. - Let
genesis_eth1_data
be theEth1Data
object where:genesis_eth1_data.deposit_root
is thedeposit_root
contained in theEth2Genesis
log.genesis_eth1_data.deposit_count
is thedeposit_count
contained in theEth2Genesis
log.genesis_eth1_data.block_hash
is the hash of the Ethereum 1.0 block that emitted theEth2Genesis
log.
- Let
genesis_state = get_genesis_beacon_state(genesis_validator_deposits, genesis_time, genesis_eth1_data)
. - Let
genesis_block = BeaconBlock(state_root=hash_tree_root(genesis_state))
.
def get_genesis_beacon_state(genesis_validator_deposits: List[Deposit],
genesis_time: int,
genesis_eth1_data: Eth1Data) -> BeaconState:
"""
Get the genesis ``BeaconState``.
"""
state = BeaconState(genesis_time=genesis_time, latest_eth1_data=genesis_eth1_data)
# Process genesis deposits
for deposit in genesis_validator_deposits:
process_deposit(state, deposit)
# Process genesis activations
for validator in state.validator_registry:
if validator.effective_balance >= MAX_EFFECTIVE_BALANCE:
validator.activation_eligibility_epoch = GENESIS_EPOCH
validator.activation_epoch = GENESIS_EPOCH
genesis_active_index_root = hash_tree_root(get_active_validator_indices(state, GENESIS_EPOCH))
for index in range(LATEST_ACTIVE_INDEX_ROOTS_LENGTH):
state.latest_active_index_roots[index] = genesis_active_index_root
return state
Beacon chain state transition function
We now define the state transition function. At a high level, the state transition is made up of four parts:
- State caching, which happens at the start of every slot.
- The per-epoch transitions, which happens at the start of the first slot of every epoch.
- The per-slot transitions, which happens at every slot.
- The per-block transitions, which happens at every block.
Transition section notes:
- The state caching caches the state root of the previous slot and updates block and state roots records.
- The per-epoch transitions focus on the validator registry, including adjusting balances and activating and exiting validators, as well as processing crosslinks and managing block justification/finalization.
- The per-slot transitions focus on the slot counter.
- The per-block transitions generally focus on verifying aggregate signatures and saving temporary records relating to the per-block activity in the
BeaconState
.
Beacon blocks that trigger unhandled Python exceptions (e.g. out-of-range list accesses) and failed assert
s during the state transition are considered invalid.
Note: If there are skipped slots between a block and its parent block, run the steps in the state-root, per-epoch, and per-slot sections once for each skipped slot and then once for the slot containing the new block.
State caching
At every slot > GENESIS_SLOT
run the following function:
def cache_state(state: BeaconState) -> None:
# Cache latest known state root (for previous slot)
latest_state_root = hash_tree_root(state)
state.latest_state_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = latest_state_root
# Store latest known state root (for previous slot) in latest_block_header if it is empty
if state.latest_block_header.state_root == ZERO_HASH:
state.latest_block_header.state_root = latest_state_root
# Cache latest known block root (for previous slot)
latest_block_root = signing_root(state.latest_block_header)
state.latest_block_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = latest_block_root
Per-epoch processing
The steps below happen when state.slot > GENESIS_SLOT and (state.slot + 1) % SLOTS_PER_EPOCH == 0
.
Helper functions
We define epoch transition helper functions:
def get_total_active_balance(state: BeaconState) -> Gwei:
return get_total_balance(state, get_active_validator_indices(state, get_current_epoch(state)))
def get_matching_source_attestations(state: BeaconState, epoch: Epoch) -> List[PendingAttestation]:
assert epoch in (get_current_epoch(state), get_previous_epoch(state))
return state.current_epoch_attestations if epoch == get_current_epoch(state) else state.previous_epoch_attestations
def get_matching_target_attestations(state: BeaconState, epoch: Epoch) -> List[PendingAttestation]:
return [
a for a in get_matching_source_attestations(state, epoch)
if a.data.target_root == get_block_root(state, epoch)
]
def get_matching_head_attestations(state: BeaconState, epoch: Epoch) -> List[PendingAttestation]:
return [
a for a in get_matching_source_attestations(state, epoch)
if a.data.beacon_block_root == get_block_root_at_slot(state, get_attestation_slot(state, a))
]
def get_unslashed_attesting_indices(state: BeaconState, attestations: List[PendingAttestation]) -> List[ValidatorIndex]:
output = set()
for a in attestations:
output = output.union(get_attesting_indices(state, a.data, a.aggregation_bitfield))
return sorted(filter(lambda index: not state.validator_registry[index].slashed, list(output)))
def get_attesting_balance(state: BeaconState, attestations: List[PendingAttestation]) -> Gwei:
return get_total_balance(state, get_unslashed_attesting_indices(state, attestations))
def get_winning_crosslink_and_attesting_indices(state: BeaconState, epoch: Epoch, shard: Shard) -> Tuple[Crosslink, List[ValidatorIndex]]:
shard_attestations = [a for a in get_matching_source_attestations(state, epoch) if a.data.crosslink.shard == shard]
candidate_crosslinks = [
c for c in [a.data.crosslink for a in shard_attestations]
if hash_tree_root(state.current_crosslinks[shard]) in (c.previous_crosslink_root, hash_tree_root(c))
]
if len(candidate_crosslinks) == 0:
return Crosslink(), []
def get_attestations_for(crosslink: Crosslink) -> List[PendingAttestation]:
return [a for a in shard_attestations if a.data.crosslink == crosslink]
# Winning crosslink has the crosslink data root with the most balance voting for it (ties broken lexicographically)
winning_crosslink = max(candidate_crosslinks, key=lambda crosslink: (
get_attesting_balance(state, get_attestations_for(crosslink)), crosslink.crosslink_data_root
))
return winning_crosslink, get_unslashed_attesting_indices(state, get_attestations_for(winning_crosslink))
Justification and finalization
Run the following function:
def process_justification_and_finalization(state: BeaconState) -> None:
if get_current_epoch(state) <= GENESIS_EPOCH + 1:
return
previous_epoch = get_previous_epoch(state)
current_epoch = get_current_epoch(state)
old_previous_justified_epoch = state.previous_justified_epoch
old_current_justified_epoch = state.current_justified_epoch
# Process justifications
state.previous_justified_epoch = state.current_justified_epoch
state.previous_justified_root = state.current_justified_root
state.justification_bitfield = (state.justification_bitfield << 1) % 2**64
previous_epoch_matching_target_balance = get_attesting_balance(state, get_matching_target_attestations(state, previous_epoch))
if previous_epoch_matching_target_balance * 3 >= get_total_active_balance(state) * 2:
state.current_justified_epoch = previous_epoch
state.current_justified_root = get_block_root(state, state.current_justified_epoch)
state.justification_bitfield |= (1 << 1)
current_epoch_matching_target_balance = get_attesting_balance(state, get_matching_target_attestations(state, current_epoch))
if current_epoch_matching_target_balance * 3 >= get_total_active_balance(state) * 2:
state.current_justified_epoch = current_epoch
state.current_justified_root = get_block_root(state, state.current_justified_epoch)
state.justification_bitfield |= (1 << 0)
# Process finalizations
bitfield = state.justification_bitfield
# The 2nd/3rd/4th most recent epochs are justified, the 2nd using the 4th as source
if (bitfield >> 1) % 8 == 0b111 and old_previous_justified_epoch == current_epoch - 3:
state.finalized_epoch = old_previous_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
# The 2nd/3rd most recent epochs are justified, the 2nd using the 3rd as source
if (bitfield >> 1) % 4 == 0b11 and old_previous_justified_epoch == current_epoch - 2:
state.finalized_epoch = old_previous_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
# The 1st/2nd/3rd most recent epochs are justified, the 1st using the 3rd as source
if (bitfield >> 0) % 8 == 0b111 and old_current_justified_epoch == current_epoch - 2:
state.finalized_epoch = old_current_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
# The 1st/2nd most recent epochs are justified, the 1st using the 2nd as source
if (bitfield >> 0) % 4 == 0b11 and old_current_justified_epoch == current_epoch - 1:
state.finalized_epoch = old_current_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
Crosslinks
Run the following function:
def process_crosslinks(state: BeaconState) -> None:
state.previous_crosslinks = [c for c in state.current_crosslinks]
for epoch in (get_previous_epoch(state), get_current_epoch(state)):
for offset in range(get_epoch_committee_count(state, epoch)):
shard = (get_epoch_start_shard(state, epoch) + offset) % SHARD_COUNT
crosslink_committee = get_crosslink_committee(state, epoch, shard)
winning_crosslink, attesting_indices = get_winning_crosslink_and_attesting_indices(state, epoch, shard)
if 3 * get_total_balance(state, attesting_indices) >= 2 * get_total_balance(state, crosslink_committee):
state.current_crosslinks[shard] = winning_crosslink
Rewards and penalties
First, we define additional helpers:
def get_base_reward(state: BeaconState, index: ValidatorIndex) -> Gwei:
adjusted_quotient = integer_squareroot(get_total_active_balance(state)) // BASE_REWARD_QUOTIENT
if adjusted_quotient == 0:
return 0
return state.validator_registry[index].effective_balance // adjusted_quotient // BASE_REWARDS_PER_EPOCH
def get_attestation_deltas(state: BeaconState) -> Tuple[List[Gwei], List[Gwei]]:
previous_epoch = get_previous_epoch(state)
total_balance = get_total_active_balance(state)
rewards = [0 for _ in range(len(state.validator_registry))]
penalties = [0 for _ in range(len(state.validator_registry))]
eligible_validator_indices = [
index for index, v in enumerate(state.validator_registry)
if is_active_validator(v, previous_epoch) or (v.slashed and previous_epoch + 1 < v.withdrawable_epoch)
]
# Micro-incentives for matching FFG source, FFG target, and head
matching_source_attestations = get_matching_source_attestations(state, previous_epoch)
matching_target_attestations = get_matching_target_attestations(state, previous_epoch)
matching_head_attestations = get_matching_head_attestations(state, previous_epoch)
for attestations in (matching_source_attestations, matching_target_attestations, matching_head_attestations):
unslashed_attesting_indices = get_unslashed_attesting_indices(state, attestations)
attesting_balance = get_attesting_balance(state, attestations)
for index in eligible_validator_indices:
if index in unslashed_attesting_indices:
rewards[index] += get_base_reward(state, index) * attesting_balance // total_balance
else:
penalties[index] += get_base_reward(state, index)
# Proposer and inclusion delay micro-rewards
for index in get_unslashed_attesting_indices(state, matching_source_attestations):
attestation = min([
a for a in matching_source_attestations
if index in get_attesting_indices(state, a.data, a.aggregation_bitfield)
], key=lambda a: a.inclusion_delay)
rewards[attestation.proposer_index] += get_base_reward(state, index) // PROPOSER_REWARD_QUOTIENT
rewards[index] += get_base_reward(state, index) * MIN_ATTESTATION_INCLUSION_DELAY // attestation.inclusion_delay
# Inactivity penalty
finality_delay = previous_epoch - state.finalized_epoch
if finality_delay > MIN_EPOCHS_TO_INACTIVITY_PENALTY:
matching_target_attesting_indices = get_unslashed_attesting_indices(state, matching_target_attestations)
for index in eligible_validator_indices:
penalties[index] += BASE_REWARDS_PER_EPOCH * get_base_reward(state, index)
if index not in matching_target_attesting_indices:
penalties[index] += state.validator_registry[index].effective_balance * finality_delay // INACTIVITY_PENALTY_QUOTIENT
return rewards, penalties
def get_crosslink_deltas(state: BeaconState) -> Tuple[List[Gwei], List[Gwei]]:
rewards = [0 for index in range(len(state.validator_registry))]
penalties = [0 for index in range(len(state.validator_registry))]
epoch = get_previous_epoch(state)
for offset in range(get_epoch_committee_count(state, epoch)):
shard = (get_epoch_start_shard(state, epoch) + offset) % SHARD_COUNT
crosslink_committee = get_crosslink_committee(state, epoch, shard)
winning_crosslink, attesting_indices = get_winning_crosslink_and_attesting_indices(state, epoch, shard)
attesting_balance = get_total_balance(state, attesting_indices)
committee_balance = get_total_balance(state, crosslink_committee)
for index in crosslink_committee:
base_reward = get_base_reward(state, index)
if index in attesting_indices:
rewards[index] += base_reward * attesting_balance // committee_balance
else:
penalties[index] += base_reward
return rewards, penalties
Run the following function:
def process_rewards_and_penalties(state: BeaconState) -> None:
if get_current_epoch(state) == GENESIS_EPOCH:
return
rewards1, penalties1 = get_attestation_deltas(state)
rewards2, penalties2 = get_crosslink_deltas(state)
for i in range(len(state.validator_registry)):
increase_balance(state, i, rewards1[i] + rewards2[i])
decrease_balance(state, i, penalties1[i] + penalties2[i])
Registry updates
Run the following function:
def process_registry_updates(state: BeaconState) -> None:
# Process activation eligibility and ejections
for index, validator in enumerate(state.validator_registry):
if validator.activation_eligibility_epoch == FAR_FUTURE_EPOCH and validator.effective_balance >= MAX_EFFECTIVE_BALANCE:
validator.activation_eligibility_epoch = get_current_epoch(state)
if is_active_validator(validator, get_current_epoch(state)) and validator.effective_balance <= EJECTION_BALANCE:
initiate_validator_exit(state, index)
# Queue validators eligible for activation and not dequeued for activation prior to finalized epoch
activation_queue = sorted([
index for index, validator in enumerate(state.validator_registry) if
validator.activation_eligibility_epoch != FAR_FUTURE_EPOCH and
validator.activation_epoch >= get_delayed_activation_exit_epoch(state.finalized_epoch)
], key=lambda index: state.validator_registry[index].activation_eligibility_epoch)
# Dequeued validators for activation up to churn limit (without resetting activation epoch)
for index in activation_queue[:get_churn_limit(state)]:
validator = state.validator_registry[index]
if validator.activation_epoch == FAR_FUTURE_EPOCH:
validator.activation_epoch = get_delayed_activation_exit_epoch(get_current_epoch(state))
Slashings
Run the following function:
def process_slashings(state: BeaconState) -> None:
current_epoch = get_current_epoch(state)
active_validator_indices = get_active_validator_indices(state, current_epoch)
total_balance = get_total_balance(state, active_validator_indices)
# Compute `total_penalties`
total_at_start = state.latest_slashed_balances[(current_epoch + 1) % LATEST_SLASHED_EXIT_LENGTH]
total_at_end = state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH]
total_penalties = total_at_end - total_at_start
for index, validator in enumerate(state.validator_registry):
if validator.slashed and current_epoch == validator.withdrawable_epoch - LATEST_SLASHED_EXIT_LENGTH // 2:
penalty = max(
validator.effective_balance * min(total_penalties * 3, total_balance) // total_balance,
validator.effective_balance // MIN_SLASHING_PENALTY_QUOTIENT
)
decrease_balance(state, index, penalty)
Final updates
Run the following function:
def process_final_updates(state: BeaconState) -> None:
current_epoch = get_current_epoch(state)
next_epoch = current_epoch + 1
# Reset eth1 data votes
if (state.slot + 1) % SLOTS_PER_ETH1_VOTING_PERIOD == 0:
state.eth1_data_votes = []
# Update effective balances with hysteresis
for index, validator in enumerate(state.validator_registry):
balance = state.balances[index]
HALF_INCREMENT = EFFECTIVE_BALANCE_INCREMENT // 2
if balance < validator.effective_balance or validator.effective_balance + 3 * HALF_INCREMENT < balance:
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
# Update start shard
state.latest_start_shard = (state.latest_start_shard + get_shard_delta(state, current_epoch)) % SHARD_COUNT
# Set active index root
index_root_position = (next_epoch + ACTIVATION_EXIT_DELAY) % LATEST_ACTIVE_INDEX_ROOTS_LENGTH
state.latest_active_index_roots[index_root_position] = hash_tree_root(
get_active_validator_indices(state, next_epoch + ACTIVATION_EXIT_DELAY)
)
# Set total slashed balances
state.latest_slashed_balances[next_epoch % LATEST_SLASHED_EXIT_LENGTH] = (
state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH]
)
# Set randao mix
state.latest_randao_mixes[next_epoch % LATEST_RANDAO_MIXES_LENGTH] = get_randao_mix(state, current_epoch)
# Set historical root accumulator
if next_epoch % (SLOTS_PER_HISTORICAL_ROOT // SLOTS_PER_EPOCH) == 0:
historical_batch = HistoricalBatch(
block_roots=state.latest_block_roots,
state_roots=state.latest_state_roots,
)
state.historical_roots.append(hash_tree_root(historical_batch))
# Rotate current/previous epoch attestations
state.previous_epoch_attestations = state.current_epoch_attestations
state.current_epoch_attestations = []
Per-slot processing
At every slot > GENESIS_SLOT
run the following function:
def advance_slot(state: BeaconState) -> None:
state.slot += 1
Per-block processing
For every block
except the genesis block, run process_block_header(state, block)
, process_randao(state, block)
and process_eth1_data(state, block)
.
Block header
def process_block_header(state: BeaconState, block: BeaconBlock) -> None:
# Verify that the slots match
assert block.slot == state.slot
# Verify that the parent matches
assert block.previous_block_root == signing_root(state.latest_block_header)
# Save current block as the new latest block
state.latest_block_header = BeaconBlockHeader(
slot=block.slot,
previous_block_root=block.previous_block_root,
block_body_root=hash_tree_root(block.body),
)
# Verify proposer is not slashed
proposer = state.validator_registry[get_beacon_proposer_index(state)]
assert not proposer.slashed
# Verify proposer signature
assert bls_verify(proposer.pubkey, signing_root(block), block.signature, get_domain(state, DOMAIN_BEACON_PROPOSER))
RANDAO
def process_randao(state: BeaconState, block: BeaconBlock) -> None:
proposer = state.validator_registry[get_beacon_proposer_index(state)]
# Verify that the provided randao value is valid
assert bls_verify(proposer.pubkey, hash_tree_root(get_current_epoch(state)), block.body.randao_reveal, get_domain(state, DOMAIN_RANDAO))
# Mix it in
state.latest_randao_mixes[get_current_epoch(state) % LATEST_RANDAO_MIXES_LENGTH] = (
xor(get_randao_mix(state, get_current_epoch(state)),
hash(block.body.randao_reveal))
)
Eth1 data
def process_eth1_data(state: BeaconState, block: BeaconBlock) -> None:
state.eth1_data_votes.append(block.body.eth1_data)
if state.eth1_data_votes.count(block.body.eth1_data) * 2 > SLOTS_PER_ETH1_VOTING_PERIOD:
state.latest_eth1_data = block.body.eth1_data
Operations
Note: All functions in this section mutate state
.
Proposer slashings
Verify that len(block.body.proposer_slashings) <= MAX_PROPOSER_SLASHINGS
.
For each proposer_slashing
in block.body.proposer_slashings
, run the following function:
def process_proposer_slashing(state: BeaconState,
proposer_slashing: ProposerSlashing) -> None:
"""
Process ``ProposerSlashing`` operation.
"""
proposer = state.validator_registry[proposer_slashing.proposer_index]
# Verify that the epoch is the same
assert slot_to_epoch(proposer_slashing.header_1.slot) == slot_to_epoch(proposer_slashing.header_2.slot)
# But the headers are different
assert proposer_slashing.header_1 != proposer_slashing.header_2
# Check proposer is slashable
assert is_slashable_validator(proposer, get_current_epoch(state))
# Signatures are valid
for header in (proposer_slashing.header_1, proposer_slashing.header_2):
domain = get_domain(state, DOMAIN_BEACON_PROPOSER, slot_to_epoch(header.slot))
assert bls_verify(proposer.pubkey, signing_root(header), header.signature, domain)
slash_validator(state, proposer_slashing.proposer_index)
Attester slashings
Verify that len(block.body.attester_slashings) <= MAX_ATTESTER_SLASHINGS
.
For each attester_slashing
in block.body.attester_slashings
, run the following function:
def process_attester_slashing(state: BeaconState,
attester_slashing: AttesterSlashing) -> None:
"""
Process ``AttesterSlashing`` operation.
"""
attestation_1 = attester_slashing.attestation_1
attestation_2 = attester_slashing.attestation_2
assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
assert verify_indexed_attestation(state, attestation_1)
assert verify_indexed_attestation(state, attestation_2)
slashed_any = False
attesting_indices_1 = attestation_1.custody_bit_0_indices + attestation_1.custody_bit_1_indices
attesting_indices_2 = attestation_2.custody_bit_0_indices + attestation_2.custody_bit_1_indices
for index in set(attesting_indices_1).intersection(attesting_indices_2):
if is_slashable_validator(state.validator_registry[index], get_current_epoch(state)):
slash_validator(state, index)
slashed_any = True
assert slashed_any
Attestations
Verify that len(block.body.attestations) <= MAX_ATTESTATIONS
.
For each attestation
in block.body.attestations
, run the following function:
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
"""
Process ``Attestation`` operation.
"""
attestation_slot = get_attestation_slot(state, attestation)
assert attestation_slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot <= attestation_slot + SLOTS_PER_EPOCH
data = attestation.data
pending_attestation = PendingAttestation(
data=data,
aggregation_bitfield=attestation.aggregation_bitfield,
inclusion_delay=state.slot - attestation_slot,
proposer_index=get_beacon_proposer_index(state),
)
assert data.target_epoch in (get_previous_epoch(state), get_current_epoch(state))
if data.target_epoch == get_previous_epoch(state):
ffg_data = (state.previous_justified_epoch, state.previous_justified_root, get_previous_epoch(state))
previous_crosslink = state.previous_crosslinks[data.crosslink.shard]
state.previous_epoch_attestations.append(pending_attestation)
if data.target_epoch == get_current_epoch(state):
ffg_data = (state.current_justified_epoch, state.current_justified_root, get_current_epoch(state))
previous_crosslink = state.current_crosslinks[data.crosslink.shard]
state.current_epoch_attestations.append(pending_attestation)
# Check FFG data, crosslink data, and signature
assert ffg_data == (data.source_epoch, data.source_root, data.target_epoch)
assert data.crosslink.epoch == min(data.target_epoch, previous_crosslink.epoch + MAX_CROSSLINK_EPOCHS)
assert data.crosslink.previous_crosslink_root == hash_tree_root(previous_crosslink)
assert data.crosslink.crosslink_data_root == ZERO_HASH # [to be removed in phase 1]
assert verify_indexed_attestation(state, convert_to_indexed(state, attestation))
Deposits
Verify that len(block.body.deposits) == min(MAX_DEPOSITS, state.latest_eth1_data.deposit_count - state.deposit_index)
.
For each deposit
in block.body.deposits
, run the following function:
def process_deposit(state: BeaconState, deposit: Deposit) -> None:
"""
Process an Eth1 deposit, registering a validator or increasing its balance.
"""
# Verify the Merkle branch
assert verify_merkle_branch(
leaf=hash_tree_root(deposit.data),
proof=deposit.proof,
depth=DEPOSIT_CONTRACT_TREE_DEPTH,
index=deposit.index,
root=state.latest_eth1_data.deposit_root,
)
# Deposits must be processed in order
assert deposit.index == state.deposit_index
state.deposit_index += 1
pubkey = deposit.data.pubkey
amount = deposit.data.amount
validator_pubkeys = [v.pubkey for v in state.validator_registry]
if pubkey not in validator_pubkeys:
# Verify the deposit signature (proof of possession)
if not bls_verify(pubkey, signing_root(deposit.data), deposit.data.signature, get_domain(state, DOMAIN_DEPOSIT)):
return
# Add validator and balance entries
state.validator_registry.append(Validator(
pubkey=pubkey,
withdrawal_credentials=deposit.data.withdrawal_credentials,
activation_eligibility_epoch=FAR_FUTURE_EPOCH,
activation_epoch=FAR_FUTURE_EPOCH,
exit_epoch=FAR_FUTURE_EPOCH,
withdrawable_epoch=FAR_FUTURE_EPOCH,
effective_balance=min(amount - amount % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
))
state.balances.append(amount)
else:
# Increase balance by deposit amount
index = validator_pubkeys.index(pubkey)
increase_balance(state, index, amount)
Voluntary exits
Verify that len(block.body.voluntary_exits) <= MAX_VOLUNTARY_EXITS
.
For each exit
in block.body.voluntary_exits
, run the following function:
def process_voluntary_exit(state: BeaconState, exit: VoluntaryExit) -> None:
"""
Process ``VoluntaryExit`` operation.
"""
validator = state.validator_registry[exit.validator_index]
# Verify the validator is active
assert is_active_validator(validator, get_current_epoch(state))
# Verify the validator has not yet exited
assert validator.exit_epoch == FAR_FUTURE_EPOCH
# Exits must specify an epoch when they become valid; they are not valid before then
assert get_current_epoch(state) >= exit.epoch
# Verify the validator has been active long enough
assert get_current_epoch(state) >= validator.activation_epoch + PERSISTENT_COMMITTEE_PERIOD
# Verify signature
domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, exit.epoch)
assert bls_verify(validator.pubkey, signing_root(exit), exit.signature, domain)
# Initiate exit
initiate_validator_exit(state, exit.validator_index)
Transfers
Verify that len(block.body.transfers) <= MAX_TRANSFERS
and that all transfers are distinct.
For each transfer
in block.body.transfers
, run the following function:
def process_transfer(state: BeaconState, transfer: Transfer) -> None:
"""
Process ``Transfer`` operation.
"""
# Verify the amount and fee are not individually too big (for anti-overflow purposes)
assert state.balances[transfer.sender] >= max(transfer.amount, transfer.fee)
# A transfer is valid in only one slot
assert state.slot == transfer.slot
# Sender must be not yet eligible for activation, withdrawn, or transfer balance over MAX_EFFECTIVE_BALANCE
assert (
state.validator_registry[transfer.sender].activation_eligibility_epoch == FAR_FUTURE_EPOCH or
get_current_epoch(state) >= state.validator_registry[transfer.sender].withdrawable_epoch or
transfer.amount + transfer.fee + MAX_EFFECTIVE_BALANCE <= state.balances[transfer.sender]
)
# Verify that the pubkey is valid
assert (
state.validator_registry[transfer.sender].withdrawal_credentials ==
BLS_WITHDRAWAL_PREFIX_BYTE + hash(transfer.pubkey)[1:]
)
# Verify that the signature is valid
assert bls_verify(transfer.pubkey, signing_root(transfer), transfer.signature, get_domain(state, DOMAIN_TRANSFER))
# Process the transfer
decrease_balance(state, transfer.sender, transfer.amount + transfer.fee)
increase_balance(state, transfer.recipient, transfer.amount)
increase_balance(state, get_beacon_proposer_index(state), transfer.fee)
# Verify balances are not dust
assert not (0 < state.balances[transfer.sender] < MIN_DEPOSIT_AMOUNT)
assert not (0 < state.balances[transfer.recipient] < MIN_DEPOSIT_AMOUNT)
State root verification
Verify the block's state_root
by running the following function:
def verify_block_state_root(state: BeaconState, block: BeaconBlock) -> None:
assert block.state_root == hash_tree_root(state)