22 KiB
22 KiB
Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data
Notice: This document is a work-in-progress for researchers and implementers.
Table of contents
- Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data
Introduction
This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.
Configuration
Misc
Name | Value | Unit | Duration |
---|---|---|---|
MAX_SHARDS |
2**10 (= 1024) |
||
ACTIVE_SHARDS |
2**6 (= 64) |
||
ONLINE_PERIOD |
2**3 (= 8) |
epochs | ~51 min |
LIGHT_CLIENT_COMMITTEE_SIZE |
2**7 (= 128) |
||
LIGHT_CLIENT_COMMITTEE_PERIOD |
2**8 (= 256) |
epochs | ~27 hours |
SHARD_BLOCK_CHUNK_SIZE |
2**18 (= 262,144) |
||
MAX_SHARD_BLOCK_CHUNKS |
2**2 (= 4) |
||
BLOCK_SIZE_TARGET |
3 * 2**16 (= 196,608) |
||
SHARD_BLOCK_OFFSETS |
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233] |
||
MAX_SHARD_BLOCKS_PER_ATTESTATION |
len(SHARD_BLOCK_OFFSETS) |
||
EMPTY_CHUNK_ROOT |
hash_tree_root(BytesN[SHARD_BLOCK_CHUNK_SIZE]()) |
||
MAX_GASPRICE |
2**14 (= 16,384) |
Gwei | |
GASPRICE_ADJUSTMENT_COEFFICIENT |
2**3 (= 8) |
||
DOMAIN_SHARD_LIGHT_CLIENT |
192 |
||
DOMAIN_SHARD_PROPOSAL |
193 |
Containers
ShardBlockWrapper
class ShardBlockWrapper(Container):
shard_parent_root: Hash
beacon_parent_root: Hash
slot: Slot
body: BytesN[SHARD_BLOCK_CHUNK_SIZE]
signature: BLSSignature
ShardSignedHeader
class ShardSignedHeader(Container):
shard_parent_root: Hash
beacon_parent_root: Hash
slot: Slot
body_root: Hash
ShardState
class ShardState(Container):
slot: Slot
gasprice: Gwei
root: Hash
latest_block_hash: Hash
AttestationData
class AttestationData(Container):
slot: Slot
index: CommitteeIndex
# LMD GHOST vote
beacon_block_root: Hash
# FFG vote
source: Checkpoint
target: Checkpoint
# Shard transition root
shard_transition_root: Hash
ShardTransition
class ShardTransition(Container):
# Starting from slot
start_slot: Slot
# Shard block lengths
shard_block_lengths: List[uint64, MAX_SHARD_BLOCKS_PER_ATTESTATION]
# Shard data roots
shard_data_roots: List[List[Hash, MAX_SHARD_BLOCK_CHUNKS], MAX_SHARD_BLOCKS_PER_ATTESTATION]
# Intermediate state roots
shard_state_roots: List[ShardState, MAX_SHARD_BLOCKS_PER_ATTESTATION]
# Proposer signature aggregate
proposer_signature_aggregate: BLSSignature
Attestation
class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
custody_bits: List[Bitlist[MAX_VALIDATORS_PER_COMMITTEE], MAX_SHARD_BLOCKS_PER_ATTESTATION]
signature: BLSSignature
IndexedAttestation
class IndexedAttestation(Container):
committee: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE]
attestation: Attestation
CompactCommittee
class CompactCommittee(Container):
pubkeys: List[BLSPubkey, MAX_VALIDATORS_PER_COMMITTEE]
compact_validators: List[uint64, MAX_VALIDATORS_PER_COMMITTEE]
AttestationCustodyBitWrapper
class AttestationCustodyBitWrapper(Container):
attestation_root: Hash
block_index: uint64
bit: bool
PendingAttestation
class PendingAttestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
inclusion_delay: Slot
proposer_index: ValidatorIndex
crosslink_success: bool
Helpers
get_online_validators
def get_online_indices(state: BeaconState) -> Set[ValidatorIndex]:
active_validators = get_active_validator_indices(state, get_current_epoch(state))
return set([i for i in active_validators if state.online_countdown[i] != 0])
pack_compact_validator
def pack_compact_validator(index: int, slashed: bool, balance_in_increments: int) -> int:
"""
Creates a compact validator object representing index, slashed status, and compressed balance.
Takes as input balance-in-increments (// EFFECTIVE_BALANCE_INCREMENT) to preserve symmetry with
the unpacking function.
"""
return (index << 16) + (slashed << 15) + balance_in_increments
committee_to_compact_committee
def committee_to_compact_committee(state: BeaconState, committee: Sequence[ValidatorIndex]) -> CompactCommittee:
"""
Given a state and a list of validator indices, outputs the CompactCommittee representing them.
"""
validators = [state.validators[i] for i in committee]
compact_validators = [
pack_compact_validator(i, v.slashed, v.effective_balance // EFFECTIVE_BALANCE_INCREMENT)
for i, v in zip(committee, validators)
]
pubkeys = [v.pubkey for v in validators]
return CompactCommittee(pubkeys=pubkeys, compact_validators=compact_validators)
get_light_client_committee
def get_light_client_committee(beacon_state: BeaconState, epoch: Epoch) -> Sequence[ValidatorIndex]:
source_epoch = epoch - epoch % LIGHT_CLIENT_COMMITTEE_PERIOD
if source_epoch > 0:
source_epoch -= LIGHT_CLIENT_COMMITTEE_PERIOD
active_validator_indices = get_active_validator_indices(beacon_state, source_epoch)
seed = get_seed(beacon_state, source_epoch, DOMAIN_SHARD_LIGHT_CLIENT)
return compute_committee(active_validator_indices, seed, 0, ACTIVE_SHARDS)[:TARGET_COMMITTEE_SIZE]
get_indexed_attestation
def get_indexed_attestation(beacon_state: BeaconState, attestation: Attestation) -> IndexedAttestation:
committee = get_beacon_committee(beacon_state, attestation.data.slot, attestation.data.index)
return IndexedAttestation(committee, attestation)
update_gasprice
def update_gasprice(prev_gasprice: Gwei, length: uint8) -> Gwei:
if length > BLOCK_SIZE_TARGET:
delta = prev_gasprice * (length - BLOCK_SIZE_TARGET) // BLOCK_SIZE_TARGET // GASPRICE_ADJUSTMENT_COEFFICIENT
return min(prev_gasprice + delta, MAX_GASPRICE)
else:
delta = prev_gasprice * (BLOCK_SIZE_TARGET - length) // BLOCK_SIZE_TARGET // GASPRICE_ADJUSTMENT_COEFFICIENT
if delta > prev_gasprice - GASPRICE_ADJUSTMENT_COEFFICIENT:
return GASPRICE_ADJUSTMENT_COEFFICIENT
else:
return prev_gasprice - delta
is_valid_indexed_attestation
def is_valid_indexed_attestation(state: BeaconState, indexed_attestation: IndexedAttestation) -> bool:
"""
Check if ``indexed_attestation`` has valid indices and signature.
"""
# Verify aggregate signature
all_pubkeys = []
all_message_hashes = []
aggregation_bits = indexed_attestation.attestation.aggregation_bits
assert len(aggregation_bits) == len(indexed_attestation.committee)
for i, custody_bits in enumerate(indexed_attestation.attestation.custody_bits):
assert len(custody_bits) == len(indexed_attestation.committee)
for participant, abit, cbit in zip(indexed_attestation.committee, aggregation_bits, custody_bits):
if abit:
all_pubkeys.append(state.validators[participant].pubkey)
# Note: only 2N distinct message hashes
all_message_hashes.append(hash_tree_root(
AttestationCustodyBitWrapper(hash_tree_root(indexed_attestation.data), i, cbit)
))
else:
assert cbit == False
return bls_verify_multiple(
pubkeys=all_pubkeys,
message_hashes=all_message_hashes,
signature=indexed_attestation.signature,
domain=get_domain(state, DOMAIN_BEACON_ATTESTER, indexed_attestation.data.target.epoch),
)
get_attestation_shard
def get_shard(state: BeaconState, attestation: Attestation) -> Shard:
return (attestation.data.index + get_start_shard(state, data.slot)) % ACTIVE_SHARDS
Beacon Chain Changes
New beacon state fields
shard_states: Vector[ShardState, MAX_SHARDS]
online_countdown: Bytes[VALIDATOR_REGISTRY_LIMIT]
current_light_committee: CompactCommittee
next_light_committee: CompactCommittee
New beacon block data fields
shard_transitions: Vector[ShardTransition, MAX_SHARDS]
light_client_signature_bitfield: Bitlist[LIGHT_CLIENT_COMMITTEE_SIZE]
light_client_signature: BLSSignature
Attestation processing
validate_attestation
def validate_attestation(state: BeaconState, attestation: Attestation) -> None:
data = attestation.data
assert data.index < ACTIVE_SHARDS
shard = get_shard(state, attestation)
proposer_index = get_beacon_proposer_index(state)
# Signature check
assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
# Type 1: on-time attestations
if data.custody_bits != []:
# Correct slot
assert data.slot == state.slot
# Correct data root count
start_slot = state.shard_next_slots[shard]
offset_slots = [start_slot + x for x in SHARD_BLOCK_OFFSETS if start_slot + x < state.slot]
assert len(attestation.custody_bits) == len(offset_slots)
# Correct parent block root
assert data.beacon_block_root == get_block_root_at_slot(state, state.slot - 1)
# Type 2: delayed attestations
else:
assert state.slot - slot_to_epoch(data.slot) < EPOCH_LENGTH
assert data.shard_transition_root == Hash()
assert len(attestation.custody_bits) == 0
apply_shard_transition
def apply_shard_transition(state: BeaconState, shard: Shard, transition: ShardTransition) -> None:
# Slot the attestation starts counting from
start_slot = state.shard_next_slots[shard]
# Correct data root count
offset_slots = [start_slot + x for x in SHARD_BLOCK_OFFSETS if start_slot + x < state.slot]
assert len(transition.shard_data_roots) == len(transition.shard_states) == len(transition.shard_block_lengths) == len(offset_slots)
assert transition.start_slot == start_slot
def chunks_to_body_root(chunks):
return hash_tree_root(chunks + [EMPTY_CHUNK_ROOT] * (MAX_SHARD_BLOCK_CHUNKS - len(chunks)))
# Reonstruct shard headers
headers = []
proposers = []
shard_parent_root = state.shard_states[shard].latest_block_hash
for i in range(len(offset_slots)):
if any(transition.shard_data_roots):
headers.append(ShardSignedHeader(
shard_parent_root=shard_parent_root,
parent_hash=get_block_root_at_slot(state, state.slot-1),
slot=offset_slots[i],
body_root=chunks_to_body_root(transition.shard_data_roots[i])
))
proposers.append(get_shard_proposer(state, shard, offset_slots[i]))
shard_parent_root = hash_tree_root(headers[-1])
# Verify correct calculation of gas prices and slots and chunk roots
prev_gasprice = state.shard_states[shard].gasprice
for i in range(len(offset_slots)):
shard_state, block_length, chunks = transition.shard_states[i], transition.shard_block_lengths[i], transition.shard_data_roots[i]
assert shard_state.gasprice == update_gasprice(prev_gasprice, block_length)
assert shard_state.slot == offset_slots[i]
assert len(chunks) == block_length // SHARD_BLOCK_CHUNK_SIZE
prev_gasprice = shard_state.gasprice
# Verify combined proposer signature
assert bls_verify_multiple(
pubkeys=[state.validators[proposer].pubkey for proposer in proposers],
message_hashes=[hash_tree_root(header) for header in headers],
signature=proposer.proposer_signature_aggregate,
domain=DOMAIN_SHARD_PROPOSAL
)
# Save updated state
state.shard_states[shard] = transition.shard_states[-1]
state.shard_states[shard].slot = state.slot - 1
process_attestations
def process_attestations(state: BeaconState, block: BeaconBlock, attestations: Sequence[Attestation]) -> None:
pending_attestations = []
# Basic validation
for attestation in attestations:
validate_attestation(state, attestation)
# Process crosslinks
online_indices = get_online_indices(state)
winners = set()
for shard in range(ACTIVE_SHARDS):
success = False
# All attestations in the block for this shard
this_shard_attestations = [attestation for attestation in attestations if get_shard(state, attestation) == shard and attestation.data.slot == state.slot]
# The committee for this shard
this_shard_committee = get_beacon_committee(state, get_current_epoch(state), shard)
# Loop over all shard transition roots
for shard_transition_root in sorted(set([attestation.data.shard_transition_root for attestation in this_shard_attestations])):
all_participants = set()
participating_attestations = []
for attestation in this_shard_attestations:
participating_attestations.append(attestation)
if attestation.data.shard_transition_root == shard_transition_root:
all_participants = all_participants.union(get_attesting_indices(state, attestation.data, attestation.aggregation_bits))
if (
get_total_balance(state, online_indices.intersection(all_participants)) * 3 >=
get_total_balance(state, online_indices.intersection(this_shard_committee)) * 2
and success is False
):
assert shard_transition_root == hash_tree_root(block.shard_transition)
process_crosslink(state, shard, block.shard_transition)
# Apply proposer reward and cost
estimated_attester_reward = sum([get_base_reward(state, attester) for attester in all_participants])
increase_balance(state, proposer, estimated_attester_reward // PROPOSER_REWARD_COEFFICIENT)
for shard_state, slot, length in zip(block.shard_transition.shard_states, offset_slots, block.shard_transition.shard_block_lengths):
decrease_balance(state, get_shard_proposer(state, shard, slot), shard_state.gasprice * length)
winners.add((shard, shard_transition_root))
success = True
if not success:
assert block.shard_transition == ShardTransition()
for attestation in attestations:
pending_attestation = PendingAttestation(
aggregation_bits=attestation.aggregation_bits,
data=attestation.data,
inclusion_delay=state.slot - data.slot,
crosslink_success=(attestation.shard, attestation.shard_transition_root) in winners and attestation.data.slot == state.slot,
proposer_index=proposer_index
)
if attestation.data.target.epoch == get_current_epoch(state):
assert attestation.data.source == state.current_justified_checkpoint
state.current_epoch_attestations.append(pending_attestation)
else:
assert attestation.data.source == state.previous_justified_checkpoint
state.previous_epoch_attestations.append(pending_attestation)
Misc block post-processing
def misc_block_post_process(state: BeaconState, block: BeaconBlock):
# Verify that a `shard_transition` in a block is empty if an attestation was not processed for it
for shard in range(MAX_SHARDS):
if state.shard_states[shard].slot != state.slot - 1:
assert block.shard_transition[shard] == ShardTransition()
for pending_attestation in state.current_epoch_attestations + state.previous_epoch_attestations:
for index in get_attesting_indices(state, pending_attestation.data, pending_attestation.aggregation_bits):
online_countdown[index] = ONLINE_PERIOD
Light client processing
def process_light_client_signatures(state: BeaconState, block: BeaconBlock):
committee = get_light_client_committee(state, get_current_epoch(state))
assert len(block.light_client_signature_bitfield) == len(committee)
tot_reward = 0
signer_keys = []
for i, bit in enumerate(block.light_client_signature_bitfield):
if bit:
signer_keys.append(state.validators[committee[i]].pubkey)
increase_balance(state, committee[i], get_base_reward(state, committee[i]))
tot_reward += get_base_reward(state, committee[i])
increase_balance(state, get_beacon_proposer_index(state), tot_reward // PROPOSER_REWARD_COEFFICIENT)
assert bls_verify(
pubkey=bls_aggregate_pubkeys(signer_keys),
message_hash=get_block_root_at_slot(state, state.slot - 1),
signature=block.light_client_signature,
domain=DOMAIN_LIGHT_CLIENT
)
Epoch transition
def phase_1_epoch_transition(state):
# Slowly remove validators from the "online" set if they do not show up
for index in range(len(state.validators)):
if state.online_countdown[index] != 0:
state.online_countdown[index] = state.online_countdown[index] - 1
# Update light client committees
if get_current_epoch(state) % LIGHT_CLIENT_COMMITTEE_PERIOD == 0:
state.current_light_committee = state.next_light_committee
new_committee = get_light_client_committee(state, get_current_epoch(state) + LIGHT_CLIENT_COMMITTEE_PERIOD)
state.next_light_committee = committee_to_compact_committee(state, new_committee)
Fraud proofs
TODO. The intent is to have a single universal fraud proof type, which contains the following parts:
- An on-time attestation on some
shard
signing aShardTransition
- An index
i
of a particular position to focus on - The
ShardTransition
itself - The full body of the block
- A Merkle proof to the
shard_states
in the parent block the attestation is referencing
The proof verifies that one of the two conditions is false:
custody_bits[i][j] != generate_custody_bit(subkey, block_contents)
for anyj
execute_state_transition(shard, slot, transition.shard_states[i-1].root, hash_tree_root(parent), get_shard_proposer(state, shard, slot), block_contents) != transition.shard_states[i].root
(ifi=0
then instead useparent.shard_states[shard][-1].root
)
Shard state transition function
def shard_state_transition(shard: Shard, slot: Slot, pre_state: Hash, previous_beacon_root: Hash, proposer_pubkey: BLSPubkey, block_data: BytesN[MAX_SHARD_BLOCK_CHUNKS * SHARD_BLOCK_CHUNK_SIZE]) -> Hash:
# We will add something more substantive in phase 2
return hash(pre_state + hash_tree_root(previous_beacon_root) + hash_tree_root(block_data))
Honest committee member behavior
Suppose you are a committee member on shard shard
at slot current_slot
. Let state
be the head beacon state you are building on. Three seconds into slot slot
, run the following procedure:
- Initialize
proposals = []
,shard_states = []
,shard_state = state.shard_states[shard][-1]
,start_slot = shard_state.slot
. - Let
offset_slots = [start_slot + x for x in SHARD_BLOCK_OFFSETS if start_slot + x < state.slot]
- For
slot in offset_slots
, do the following:- Look for all valid proposals for
slot
; that is, a Bytesproposal
whereshard_state_transition(shard, slot, shard_state, get_block_root_at_slot(state, state.slot - 1), get_shard_proposer(state, shard, slot), proposal)
returns a result and does not throw an exception. Letchoices
be the set of non-empty valid proposals you discover. - If
len(choices) == 0
, doproposals.append(make_empty_proposal(shard_state, slot))
- If
len(choices) == 1
, doproposals.append(choices[0])
- If
len(choices) > 1
, letwinning_proposal
be the proposal with the largest number of total attestations from slots instate.shard_next_slots[shard]....slot-1
supporting it or any of its descendants, breaking ties by choosing the first proposal locally seen. Doproposals.append(winning_proposal)
. - Set
shard_state = shard_state_transition(shard, slot, shard_state, get_block_root_at_slot(state, state.slot - 1), get_shard_proposer(state, shard, slot), proposals[-1])
and doshard_states.append(shard_state)
.
- Look for all valid proposals for
Make an attestation using shard_data_roots = [hash_tree_root(proposal) for proposal in proposals]
and shard_state_roots = shard_states
.