26 KiB
EIP-7594 -- Polynomial Commitments Sampling
Table of contents
- Introduction
- Public Methods
- Custom types
- Constants
- Preset
- Helper functions
- Cells
- Reconstruction
Introduction
This document extends polynomial-commitments.md with the functions required for data availability sampling (DAS). It is not part of the core Deneb spec but an extension that can be optionally implemented to allow nodes to reduce their load using DAS.
Public Methods
For any KZG library extended to support DAS, functions flagged as "Public method" MUST be provided by the underlying KZG library as public functions. All other functions are private functions used internally by the KZG library.
Public functions MUST accept raw bytes as input and perform the required cryptographic normalization before invoking any internal functions.
The following is a list of the public methods:
compute_cells_and_kzg_proofs
verify_cell_kzg_proof
verify_cell_kzg_proof_batch
recover_cells_and_kzg_proofs
Custom types
Name | SSZ equivalent | Description |
---|---|---|
PolynomialCoeff |
List[BLSFieldElement, FIELD_ELEMENTS_PER_EXT_BLOB] |
A polynomial in coefficient form |
Coset |
Vector[BLSFieldElement, FIELD_ELEMENTS_PER_CELL] |
The evaluation domain of a cell |
CosetEvals |
Vector[BLSFieldElement, FIELD_ELEMENTS_PER_CELL] |
The internal representation of a cell (the evaluations over its Coset) |
Cell |
ByteVector[BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_CELL] |
The unit of blob data that can come with its own KZG proof |
CellIndex |
uint64 |
Validation: x < CELLS_PER_EXT_BLOB |
Constants
Name | Value | Notes |
---|
Preset
Cells
Cells are the smallest unit of blob data that can come with their own KZG proofs. Samples can be constructed from one or several cells (e.g. an individual cell or line).
Name | Value | Description |
---|---|---|
FIELD_ELEMENTS_PER_EXT_BLOB |
2 * FIELD_ELEMENTS_PER_BLOB |
Number of field elements in a Reed-Solomon extended blob |
FIELD_ELEMENTS_PER_CELL |
uint64(64) |
Number of field elements in a cell |
BYTES_PER_CELL |
FIELD_ELEMENTS_PER_CELL * BYTES_PER_FIELD_ELEMENT |
The number of bytes in a cell |
CELLS_PER_EXT_BLOB |
FIELD_ELEMENTS_PER_EXT_BLOB // FIELD_ELEMENTS_PER_CELL |
The number of cells in an extended blob |
RANDOM_CHALLENGE_KZG_CELL_BATCH_DOMAIN |
b'RCKZGCBATCH__V1_' |
Helper functions
BLS12-381 helpers
cell_to_coset_evals
def cell_to_coset_evals(cell: Cell) -> CosetEvals:
"""
Convert an untrusted ``Cell`` into a trusted ``CosetEvals``.
"""
evals = []
for i in range(FIELD_ELEMENTS_PER_CELL):
start = i * BYTES_PER_FIELD_ELEMENT
end = (i + 1) * BYTES_PER_FIELD_ELEMENT
value = bytes_to_bls_field(cell[start:end])
evals.append(value)
return CosetEvals(evals)
coset_evals_to_cell
def coset_evals_to_cell(coset_evals: CosetEvals) -> Cell:
"""
Convert a trusted ``CosetEval`` into an untrusted ``Cell``.
"""
cell = []
for i in range(FIELD_ELEMENTS_PER_CELL):
cell += bls_field_to_bytes(coset_evals[i])
return Cell(cell)
Linear combinations
g2_lincomb
def g2_lincomb(points: Sequence[G2Point], scalars: Sequence[BLSFieldElement]) -> Bytes96:
"""
BLS multiscalar multiplication in G2. This can be naively implemented using double-and-add.
"""
assert len(points) == len(scalars)
if len(points) == 0:
return bls.G2_to_bytes96(bls.Z2())
points_g2 = []
for point in points:
points_g2.append(bls.bytes96_to_G2(point))
result = bls.multi_exp(points_g2, scalars)
return Bytes96(bls.G2_to_bytes96(result))
FFTs
_fft_field
def _fft_field(vals: Sequence[BLSFieldElement],
roots_of_unity: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]:
if len(vals) == 1:
return vals
L = _fft_field(vals[::2], roots_of_unity[::2])
R = _fft_field(vals[1::2], roots_of_unity[::2])
o = [BLSFieldElement(0) for _ in vals]
for i, (x, y) in enumerate(zip(L, R)):
y_times_root = (int(y) * int(roots_of_unity[i])) % BLS_MODULUS
o[i] = BLSFieldElement((int(x) + y_times_root) % BLS_MODULUS)
o[i + len(L)] = BLSFieldElement((int(x) - y_times_root + BLS_MODULUS) % BLS_MODULUS)
return o
fft_field
def fft_field(vals: Sequence[BLSFieldElement],
roots_of_unity: Sequence[BLSFieldElement],
inv: bool=False) -> Sequence[BLSFieldElement]:
if inv:
# Inverse FFT
invlen = pow(len(vals), BLS_MODULUS - 2, BLS_MODULUS)
return [BLSFieldElement((int(x) * invlen) % BLS_MODULUS)
for x in _fft_field(vals, list(roots_of_unity[0:1]) + list(roots_of_unity[:0:-1]))]
else:
# Regular FFT
return _fft_field(vals, roots_of_unity)
Polynomials in coefficient form
polynomial_eval_to_coeff
def polynomial_eval_to_coeff(polynomial: Polynomial) -> PolynomialCoeff:
"""
Interpolates a polynomial (given in evaluation form) to a polynomial in coefficient form.
"""
roots_of_unity = compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB)
polynomial_coeff = fft_field(bit_reversal_permutation(list(polynomial)), roots_of_unity, inv=True)
return polynomial_coeff
add_polynomialcoeff
def add_polynomialcoeff(a: PolynomialCoeff, b: PolynomialCoeff) -> PolynomialCoeff:
"""
Sum the coefficient form polynomials ``a`` and ``b``.
"""
a, b = (a, b) if len(a) >= len(b) else (b, a)
length_a = len(a)
length_b = len(b)
return [(a[i] + (b[i] if i < length_b else 0)) % BLS_MODULUS for i in range(length_a)]
neg_polynomialcoeff
def neg_polynomialcoeff(a: PolynomialCoeff) -> PolynomialCoeff:
"""
Negative of coefficient form polynomial ``a``
"""
return [(BLS_MODULUS - x) % BLS_MODULUS for x in a]
multiply_polynomialcoeff
def multiply_polynomialcoeff(a: PolynomialCoeff, b: PolynomialCoeff) -> PolynomialCoeff:
"""
Multiplies the coefficient form polynomials ``a`` and ``b``
"""
assert len(a) + len(b) <= FIELD_ELEMENTS_PER_EXT_BLOB
r = [0]
for power, coef in enumerate(a):
summand = [0] * power + [int(coef) * int(x) % BLS_MODULUS for x in b]
r = add_polynomialcoeff(r, summand)
return r
divide_polynomialcoeff
def divide_polynomialcoeff(a: PolynomialCoeff, b: PolynomialCoeff) -> PolynomialCoeff:
"""
Long polynomial division for two coefficient form polynomials ``a`` and ``b``
"""
a = a.copy() # Make a copy since `a` is passed by reference
o: List[BLSFieldElement] = []
apos = len(a) - 1
bpos = len(b) - 1
diff = apos - bpos
while diff >= 0:
quot = div(a[apos], b[bpos])
o.insert(0, quot)
for i in range(bpos, -1, -1):
a[diff + i] = (int(a[diff + i]) - int(b[i] + BLS_MODULUS) * int(quot)) % BLS_MODULUS
apos -= 1
diff -= 1
return [x % BLS_MODULUS for x in o]
shift_polynomialcoeff
def shift_polynomialcoeff(polynomial_coeff: PolynomialCoeff, factor: BLSFieldElement) -> PolynomialCoeff:
"""
Shift the evaluation of a polynomial in coefficient form by factor.
This returns a new polynomial g in coefficient form such that g(x) = f(factor * x).
In other words, each coefficient of f is scaled by a power of factor.
"""
factor_power = 1
o = []
for p in polynomial_coeff:
o.append(int(p) * factor_power % BLS_MODULUS)
factor_power = factor_power * int(factor) % BLS_MODULUS
return o
interpolate_polynomialcoeff
def interpolate_polynomialcoeff(xs: Sequence[BLSFieldElement], ys: Sequence[BLSFieldElement]) -> PolynomialCoeff:
"""
Lagrange interpolation: Finds the lowest degree polynomial that takes the value ``ys[i]`` at ``x[i]``
for all i.
Outputs a coefficient form polynomial. Leading coefficients may be zero.
"""
assert len(xs) == len(ys)
r = [0]
for i in range(len(xs)):
summand = [ys[i]]
for j in range(len(ys)):
if j != i:
weight_adjustment = bls_modular_inverse(int(xs[i]) - int(xs[j]))
summand = multiply_polynomialcoeff(
summand, [((BLS_MODULUS - int(weight_adjustment)) * int(xs[j])) % BLS_MODULUS, weight_adjustment]
)
r = add_polynomialcoeff(r, summand)
return r
vanishing_polynomialcoeff
def vanishing_polynomialcoeff(xs: Sequence[BLSFieldElement]) -> PolynomialCoeff:
"""
Compute the vanishing polynomial on ``xs`` (in coefficient form)
"""
p = [1]
for x in xs:
p = multiply_polynomialcoeff(p, [-int(x) + BLS_MODULUS, 1])
return p
evaluate_polynomialcoeff
def evaluate_polynomialcoeff(polynomial_coeff: PolynomialCoeff, z: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a coefficient form polynomial at ``z`` using Horner's schema
"""
y = 0
for coef in polynomial_coeff[::-1]:
y = (int(y) * int(z) + int(coef)) % BLS_MODULUS
return BLSFieldElement(y % BLS_MODULUS)
KZG multiproofs
Extended KZG functions for multiproofs
compute_kzg_proof_multi_impl
def compute_kzg_proof_multi_impl(
polynomial_coeff: PolynomialCoeff,
zs: Coset) -> Tuple[KZGProof, CosetEvals]:
"""
Compute a KZG multi-evaluation proof for a set of `k` points.
This is done by committing to the following quotient polynomial:
Q(X) = f(X) - I(X) / Z(X)
Where:
- I(X) is the degree `k-1` polynomial that agrees with f(x) at all `k` points
- Z(X) is the degree `k` polynomial that evaluates to zero on all `k` points
We further note that since the degree of I(X) is less than the degree of Z(X),
the computation can be simplified in monomial form to Q(X) = f(X) / Z(X)
"""
# For all points, compute the evaluation of those points
ys = [evaluate_polynomialcoeff(polynomial_coeff, z) for z in zs]
# Compute Z(X)
denominator_poly = vanishing_polynomialcoeff(zs)
# Compute the quotient polynomial directly in monomial form
quotient_polynomial = divide_polynomialcoeff(polynomial_coeff, denominator_poly)
return KZGProof(g1_lincomb(KZG_SETUP_G1_MONOMIAL[:len(quotient_polynomial)], quotient_polynomial)), ys
verify_kzg_proof_multi_impl
def verify_kzg_proof_multi_impl(commitment: KZGCommitment,
zs: Coset,
ys: CosetEvals,
proof: KZGProof) -> bool:
"""
Verify a KZG multi-evaluation proof for a set of `k` points.
This is done by checking if the following equation holds:
Q(x) Z(x) = f(X) - I(X)
Where:
f(X) is the polynomial that we want to verify opens at `k` points to `k` values
Q(X) is the quotient polynomial computed by the prover
I(X) is the degree k-1 polynomial that evaluates to `ys` at all `zs`` points
Z(X) is the polynomial that evaluates to zero on all `k` points
The verifier receives the commitments to Q(X) and f(X), so they check the equation
holds by using the following pairing equation:
e([Q(X)]_1, [Z(X)]_2) == e([f(X)]_1 - [I(X)]_1, [1]_2)
"""
assert len(zs) == len(ys)
# Compute [Z(X)]_2
zero_poly = g2_lincomb(KZG_SETUP_G2_MONOMIAL[:len(zs) + 1], vanishing_polynomialcoeff(zs))
# Compute [I(X)]_1
interpolated_poly = g1_lincomb(KZG_SETUP_G1_MONOMIAL[:len(zs)], interpolate_polynomialcoeff(zs, ys))
return (bls.pairing_check([
[bls.bytes48_to_G1(proof), bls.bytes96_to_G2(zero_poly)],
[
bls.add(bls.bytes48_to_G1(commitment), bls.neg(bls.bytes48_to_G1(interpolated_poly))),
bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[0])),
],
]))
Cell cosets
coset_for_cell
def coset_for_cell(cell_index: CellIndex) -> Coset:
"""
Get the coset for a given ``cell_index``.
"""
assert cell_index < CELLS_PER_EXT_BLOB
roots_of_unity_brp = bit_reversal_permutation(
compute_roots_of_unity(FIELD_ELEMENTS_PER_EXT_BLOB)
)
return Coset(roots_of_unity_brp[FIELD_ELEMENTS_PER_CELL * cell_index:FIELD_ELEMENTS_PER_CELL * (cell_index + 1)])
Cells
Cell computation
compute_cells_and_kzg_proofs
def compute_cells_and_kzg_proofs(blob: Blob) -> Tuple[
Vector[Cell, CELLS_PER_EXT_BLOB],
Vector[KZGProof, CELLS_PER_EXT_BLOB]]:
"""
Compute all the cell proofs for an extended blob. This is an inefficient O(n^2) algorithm,
for performant implementation the FK20 algorithm that runs in O(n log n) should be
used instead.
Public method.
"""
assert len(blob) == BYTES_PER_BLOB
polynomial = blob_to_polynomial(blob)
polynomial_coeff = polynomial_eval_to_coeff(polynomial)
cells = []
proofs = []
for i in range(CELLS_PER_EXT_BLOB):
coset = coset_for_cell(CellIndex(i))
proof, ys = compute_kzg_proof_multi_impl(polynomial_coeff, coset)
cells.append(coset_evals_to_cell(ys))
proofs.append(proof)
return cells, proofs
Cell verification
verify_cell_kzg_proof
def verify_cell_kzg_proof(commitment_bytes: Bytes48,
cell_index: CellIndex,
cell: Cell,
proof_bytes: Bytes48) -> bool:
"""
Check a cell proof
Public method.
"""
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
assert cell_index < CELLS_PER_EXT_BLOB
assert len(cell) == BYTES_PER_CELL
assert len(proof_bytes) == BYTES_PER_PROOF
coset = coset_for_cell(cell_index)
return verify_kzg_proof_multi_impl(
bytes_to_kzg_commitment(commitment_bytes),
coset,
cell_to_coset_evals(cell),
bytes_to_kzg_proof(proof_bytes))
verify_cell_kzg_proof_batch
def verify_cell_kzg_proof_batch(row_commitments_bytes: Sequence[Bytes48],
row_indices: Sequence[RowIndex],
column_indices: Sequence[ColumnIndex],
cells: Sequence[Cell],
proofs_bytes: Sequence[Bytes48]) -> bool:
"""
Verify a set of cells, given their corresponding proofs and their coordinates (row_id, column_id) in the blob
matrix. The list of all commitments is also provided in row_commitments_bytes.
This function implements the naive algorithm of checking every cell
individually; an efficient algorithm can be found here:
https://ethresear.ch/t/a-universal-verification-equation-for-data-availability-sampling/13240
This implementation does not require randomness, but for the algorithm that
requires it, `RANDOM_CHALLENGE_KZG_CELL_BATCH_DOMAIN` should be used to compute
the challenge value.
Public method.
"""
assert len(cells) == len(proofs_bytes) == len(row_indices) == len(column_indices)
for commitment_bytes in row_commitments_bytes:
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
for row_index in row_indices:
assert row_index < len(row_commitments_bytes)
for column_index in column_indices:
assert column_index < CELLS_PER_EXT_BLOB
for cell in cells:
assert len(cell) == BYTES_PER_CELL
for proof_bytes in proofs_bytes:
assert len(proof_bytes) == BYTES_PER_PROOF
# Get commitments via row IDs
commitments_bytes = [row_commitments_bytes[row_index] for row_index in row_indices]
# Get objects from bytes
commitments = [bytes_to_kzg_commitment(commitment_bytes) for commitment_bytes in commitments_bytes]
cosets_evals = [cell_to_coset_evals(cell) for cell in cells]
proofs = [bytes_to_kzg_proof(proof_bytes) for proof_bytes in proofs_bytes]
return all(
verify_kzg_proof_multi_impl(commitment, coset_for_cell(column_index), coset_evals, proof)
for commitment, column_index, coset_evals, proof in zip(commitments, column_indices, cosets_evals, proofs)
)
Reconstruction
construct_vanishing_polynomial
def construct_vanishing_polynomial(missing_cell_indices: Sequence[CellIndex]) -> Tuple[
Sequence[BLSFieldElement],
Sequence[BLSFieldElement]]:
"""
Given the cells that are missing from the data, compute the polynomial that vanishes at every point that
corresponds to a missing field element.
"""
# Get the small domain
roots_of_unity_reduced = compute_roots_of_unity(CELLS_PER_EXT_BLOB)
# Compute polynomial that vanishes at all the missing cells (over the small domain)
short_zero_poly = vanishing_polynomialcoeff([
roots_of_unity_reduced[reverse_bits(missing_cell_index, CELLS_PER_EXT_BLOB)]
for missing_cell_index in missing_cell_indices
])
# Extend vanishing polynomial to full domain using the closed form of the vanishing polynomial over a coset
zero_poly_coeff = [BLSFieldElement(0)] * FIELD_ELEMENTS_PER_EXT_BLOB
for i, coeff in enumerate(short_zero_poly):
zero_poly_coeff[i * FIELD_ELEMENTS_PER_CELL] = coeff
# Compute evaluations of the extended vanishing polynomial
zero_poly_eval = fft_field(zero_poly_coeff,
compute_roots_of_unity(FIELD_ELEMENTS_PER_EXT_BLOB))
zero_poly_eval_brp = bit_reversal_permutation(zero_poly_eval)
# Sanity check
for cell_index in range(CELLS_PER_EXT_BLOB):
start = cell_index * FIELD_ELEMENTS_PER_CELL
end = (cell_index + 1) * FIELD_ELEMENTS_PER_CELL
if cell_index in missing_cell_indices:
assert all(a == 0 for a in zero_poly_eval_brp[start:end])
else: # cell_index in cell_indices
assert all(a != 0 for a in zero_poly_eval_brp[start:end])
return zero_poly_coeff, zero_poly_eval
recover_shifted_data
def recover_shifted_data(cell_indices: Sequence[CellIndex],
cells: Sequence[Cell],
zero_poly_eval: Sequence[BLSFieldElement],
zero_poly_coeff: Sequence[BLSFieldElement],
roots_of_unity_extended: Sequence[BLSFieldElement]) -> Tuple[
Sequence[BLSFieldElement],
Sequence[BLSFieldElement],
BLSFieldElement]:
"""
Given Z(x), return polynomial Q_1(x)=(E*Z)(k*x) and Q_2(x)=Z(k*x) and k^{-1}.
"""
shift_factor = BLSFieldElement(PRIMITIVE_ROOT_OF_UNITY)
shift_inv = div(BLSFieldElement(1), shift_factor)
extended_evaluation_rbo = [0] * FIELD_ELEMENTS_PER_EXT_BLOB
for cell_index, cell in zip(cell_indices, cells):
start = cell_index * FIELD_ELEMENTS_PER_CELL
end = (cell_index + 1) * FIELD_ELEMENTS_PER_CELL
extended_evaluation_rbo[start:end] = cell
extended_evaluation = bit_reversal_permutation(extended_evaluation_rbo)
# Compute (E*Z)(x)
extended_evaluation_times_zero = [BLSFieldElement(int(a) * int(b) % BLS_MODULUS)
for a, b in zip(zero_poly_eval, extended_evaluation)]
extended_evaluations_fft = fft_field(extended_evaluation_times_zero, roots_of_unity_extended, inv=True)
# Compute (E*Z)(k*x)
shifted_extended_evaluation = shift_polynomialcoeff(extended_evaluations_fft, shift_factor)
# Compute Z(k*x)
shifted_zero_poly = shift_polynomialcoeff(zero_poly_coeff, shift_factor)
eval_shifted_extended_evaluation = fft_field(shifted_extended_evaluation, roots_of_unity_extended)
eval_shifted_zero_poly = fft_field(shifted_zero_poly, roots_of_unity_extended)
return eval_shifted_extended_evaluation, eval_shifted_zero_poly, shift_inv
recover_original_data
def recover_original_data(eval_shifted_extended_evaluation: Sequence[BLSFieldElement],
eval_shifted_zero_poly: Sequence[BLSFieldElement],
shift_inv: BLSFieldElement,
roots_of_unity_extended: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]:
"""
Given Q_1, Q_2 and k^{-1}, compute P(x).
"""
# Compute Q_3 = Q_1(x)/Q_2(x) = P(k*x)
eval_shifted_reconstructed_poly = [
div(a, b)
for a, b in zip(eval_shifted_extended_evaluation, eval_shifted_zero_poly)
]
shifted_reconstructed_poly = fft_field(eval_shifted_reconstructed_poly, roots_of_unity_extended, inv=True)
# Unshift P(k*x) by k^{-1} to get P(x)
reconstructed_poly = shift_polynomialcoeff(shifted_reconstructed_poly, shift_inv)
reconstructed_data = bit_reversal_permutation(fft_field(reconstructed_poly, roots_of_unity_extended))
return reconstructed_data
recover_cells_and_kzg_proofs
def recover_cells_and_kzg_proofs(cell_indices: Sequence[CellIndex],
cells: Sequence[Cell],
proofs_bytes: Sequence[Bytes48]) -> Tuple[
Vector[Cell, CELLS_PER_EXT_BLOB],
Vector[KZGProof, CELLS_PER_EXT_BLOB]]:
"""
Given at least 50% of cells/proofs for a blob, recover all the cells/proofs.
This algorithm uses FFTs to recover cells faster than using Lagrange
implementation, as can be seen here:
https://ethresear.ch/t/reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts/3039
A faster version thanks to Qi Zhou can be found here:
https://github.com/ethereum/research/blob/51b530a53bd4147d123ab3e390a9d08605c2cdb8/polynomial_reconstruction/polynomial_reconstruction_danksharding.py
Public method.
"""
assert len(cell_indices) == len(cells) == len(proofs_bytes)
# Check we have enough cells to be able to perform the reconstruction
assert CELLS_PER_EXT_BLOB / 2 <= len(cell_indices) <= CELLS_PER_EXT_BLOB
# Check for duplicates
assert len(cell_indices) == len(set(cell_indices))
# Check that the cell indices are within bounds
for cell_index in cell_indices:
assert cell_index < CELLS_PER_EXT_BLOB
# Check that each cell is the correct length
for cell in cells:
assert len(cell) == BYTES_PER_CELL
# Check that each proof is the correct length
for proof_bytes in proofs_bytes:
assert len(proof_bytes) == BYTES_PER_PROOF
# Get the extended domain
roots_of_unity_extended = compute_roots_of_unity(FIELD_ELEMENTS_PER_EXT_BLOB)
# Convert cells to coset evals
cosets_evals = [cell_to_coset_evals(cell) for cell in cells]
missing_cell_indices = [CellIndex(cell_index) for cell_index in range(CELLS_PER_EXT_BLOB)
if cell_index not in cell_indices]
zero_poly_coeff, zero_poly_eval = construct_vanishing_polynomial(missing_cell_indices)
eval_shifted_extended_evaluation, eval_shifted_zero_poly, shift_inv = recover_shifted_data(
cell_indices,
cosets_evals,
zero_poly_eval,
zero_poly_coeff,
roots_of_unity_extended,
)
reconstructed_data = recover_original_data(
eval_shifted_extended_evaluation,
eval_shifted_zero_poly,
shift_inv,
roots_of_unity_extended,
)
for cell_index, coset_evals in zip(cell_indices, cosets_evals):
start = cell_index * FIELD_ELEMENTS_PER_CELL
end = (cell_index + 1) * FIELD_ELEMENTS_PER_CELL
assert reconstructed_data[start:end] == coset_evals
recovered_cells = [
coset_evals_to_cell(reconstructed_data[i * FIELD_ELEMENTS_PER_CELL:(i + 1) * FIELD_ELEMENTS_PER_CELL])
for i in range(CELLS_PER_EXT_BLOB)]
polynomial_eval = reconstructed_data[:FIELD_ELEMENTS_PER_BLOB]
polynomial_coeff = polynomial_eval_to_coeff(polynomial_eval)
recovered_proofs = [None] * CELLS_PER_EXT_BLOB
for i, cell_index in enumerate(cell_indices):
recovered_proofs[cell_index] = bytes_to_kzg_proof(proofs_bytes[i])
for i in range(CELLS_PER_EXT_BLOB):
if recovered_proofs[i] is None:
coset = coset_for_cell(CellIndex(i))
proof, ys = compute_kzg_proof_multi_impl(polynomial_coeff, coset)
assert coset_evals_to_cell(ys) == recovered_cells[i]
recovered_proofs[i] = proof
return recovered_cells, recovered_proofs