6.3 KiB
Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data
Notice: This document is a work-in-progress for researchers and implementers.
Table of contents
Introduction
This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.
Configuration
Misc
Name | Value |
---|---|
MAX_SHARDS |
2**10 (= 1024) |
ACTIVE_SHARDS |
2**6 (= 64) |
SHARD_ROOT_HISTORY_LENGTH |
2**15 (= 32,768) |
MAX_CATCHUP |
2**3 (= 8) |
Containers
AttestationData
class AttestationData(Container):
# Slot
slot: Slot
# Shard
shard: shard
# LMD GHOST vote
beacon_block_root: Hash
# FFG vote
source: Checkpoint
target: Checkpoint
# Shard data roots
shard_data_roots: List[Hash, MAX_CATCHUP]
# Intermediate state roots
shard_state_roots: List[Hash, MAX_CATCHUP]
Attestation
class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
custody_bits: List[Bitlist[MAX_VALIDATORS_PER_COMMITTEE], MAX_CATCHUP]
signature: BLSSignature
Beacon Chain Changes
New state variables
shard_state_roots: Vector[Hash, MAX_SHARDS]
shard_next_slot: Vector[Slot, MAX_SHARDS]
Attestation processing
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
data = attestation.data
assert shard < ACTIVE_SHARDS
# Signature check
committee = get_crosslink_committee(state, get_current_epoch(state), data.shard)
for bits in attestation.custody_bits + [attestation.aggregation_bits]:
assert bits == len(committee)
# Check signature
assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
# Type 1: on-time attestations
if data.custody_bits != []:
# Correct start slot
assert data.slot == state.shard_next_slot[data.shard]
# Correct data root count
assert len(data.shard_data_roots) == len(attestation.custody_bits) == len(data.shard_state_roots) == min(state.slot - data.slot, MAX_CATCHUP)
# Correct parent block root
assert data.beacon_block_root == get_block_root_at_slot(state, state.slot - 1)
# Apply
online_indices = get_online_indices(state)
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits).intersection(get_online_indices)
if get_total_balance(state, attesting_indices) * 3 >= get_total_balance(state, online_indices) * 2:
state.shard_state_roots[data.shard] = data.shard_state_roots[-1]
state.shard_next_slot[data.shard] += len(data.shard_data_roots)
# Type 2: delayed attestations
else:
assert slot_to_epoch(data.slot) in (get_current_epoch(state), get_previous_epoch(state))
assert len(data.shard_data_roots) == len(data.intermediate_state_roots) == 0
pending_attestation = PendingAttestation(
slot=data.slot,
shard=data.shard,
aggregation_bits=attestation.aggregation_bits,
inclusion_delay=state.slot - attestation_slot,
proposer_index=get_beacon_proposer_index(state),
)
if data.target.epoch == get_current_epoch(state):
assert data.source == state.current_justified_checkpoint
state.current_epoch_attestations.append(pending_attestation)
else:
assert data.source == state.previous_justified_checkpoint
state.previous_epoch_attestations.append(pending_attestation)
Fraud proofs
TODO. The intent is to have a single universal fraud proof type, which contains (i) an on-time attestation on shard s
signing a set of data_roots
, (ii) an index i
of a particular data root to focus on, (iii) the full contents of the i'th data, (iii) a Merkle proof to the shard_state_roots
in the parent block the attestation is referencing, and which then verifies that one of the two conditions is false:
custody_bits[i][j] != generate_custody_bit(subkey, block_contents)
for anyj
execute_state_transition(slot, shard, attestation.shard_state_roots[i-1], parent.shard_state_roots, block_contents) != shard_state_roots[i]
(ifi=0
then instead useparent.shard_state_roots[s]
)
For phase 1, we will use a simple state transition function:
- Check that
data[:32] == prev_state_root
- Check that
bls_verify(get_shard_proposer(state, slot, shard), hash_tree_root(data[-96:]), BLSSignature(data[-96:]), BLOCK_SIGNATURE_DOMAIN)
- Output the new state root:
hash_tree_root(prev_state_root, other_prev_state_roots, data)
Honest persistent committee member behavior
Suppose you are a persistent committee member on shard i
at slot s
. Suppose state.shard_next_slots[i] = s-1
("the happy case"). In this case, you look for a valid proposal that satisfies the checks in the state transition function above, and if you see such a proposal data
with post-state post_state
, make an attestation with shard_data_roots = [hash_tree_root(data)]
and shard_state_roots = [post_state]
. If you do not find such a proposal, make an attestation using the "default empty proposal", data = prev_state_root + b'\x00' * 96
.
Now suppose state.shard_next_slots[i] = s-k
for k>1
. Then, initialize data = []
, states = []
, state = state.shard_state_roots[i]
. For slot in (state.shard_next_slot, min(state.shard_next_slot + MAX_CATCHUP, s))
, do:
- Look for all valid proposals for
slot
whose first 32 bytes equal tostate
. If there are none, add a default empty proposal todata
. If there is one such proposalp
, addp
todata
. If there is more than one, select the one with the largest number of total attestations supporting it or its descendants, and add it todata
. - Set
state
to the state after processing the proposal just added todata
; append it tostates
Make an attestation using shard_data_roots = data
and shard_state_roots = states
.