eth2.0-specs/specs/core/1_new_shards.md
2019-12-05 13:29:41 -07:00

6.3 KiB

Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data

Notice: This document is a work-in-progress for researchers and implementers.

Table of contents

Introduction

This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.

Configuration

Misc

Name Value
MAX_SHARDS 2**10 (= 1024)
ACTIVE_SHARDS 2**6 (= 64)
SHARD_ROOT_HISTORY_LENGTH 2**15 (= 32,768)
MAX_CATCHUP 2**3 (= 8)

Containers

AttestationData

class AttestationData(Container):
    # Slot
    slot: Slot
    # Shard
    shard: shard
    # LMD GHOST vote
    beacon_block_root: Hash
    # FFG vote
    source: Checkpoint
    target: Checkpoint
    # Shard data roots
    shard_data_roots: List[Hash, MAX_CATCHUP]
    # Intermediate state roots
    shard_state_roots: List[Hash, MAX_CATCHUP]

Attestation

class Attestation(Container):
    aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
    data: AttestationData
    custody_bits: List[Bitlist[MAX_VALIDATORS_PER_COMMITTEE], MAX_CATCHUP]
    signature: BLSSignature

Beacon Chain Changes

New state variables

    shard_state_roots: Vector[Hash, MAX_SHARDS]
    shard_next_slot: Vector[Slot, MAX_SHARDS]

Attestation processing

def process_attestation(state: BeaconState, attestation: Attestation) -> None:
    data = attestation.data
    assert shard < ACTIVE_SHARDS

    # Signature check
    committee = get_crosslink_committee(state, get_current_epoch(state), data.shard)
    for bits in attestation.custody_bits + [attestation.aggregation_bits]:
        assert bits == len(committee)
    # Check signature
    assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
    
    # Type 1: on-time attestations
    if data.custody_bits != []:
        # Correct start slot
        assert data.slot == state.shard_next_slot[data.shard]
        # Correct data root count
        assert len(data.shard_data_roots) == len(attestation.custody_bits) == len(data.shard_state_roots) == min(state.slot - data.slot, MAX_CATCHUP)
        # Correct parent block root
        assert data.beacon_block_root == get_block_root_at_slot(state, state.slot - 1)
        # Apply
        online_indices = get_online_indices(state)
        attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits).intersection(get_online_indices)
        if get_total_balance(state, attesting_indices) * 3 >= get_total_balance(state, online_indices) * 2:
            state.shard_state_roots[data.shard] = data.shard_state_roots[-1]
            state.shard_next_slot[data.shard] += len(data.shard_data_roots)
        
    # Type 2: delayed attestations
    else:
        assert slot_to_epoch(data.slot) in (get_current_epoch(state), get_previous_epoch(state))
        assert len(data.shard_data_roots) == len(data.intermediate_state_roots) == 0

    pending_attestation = PendingAttestation(
        slot=data.slot,
        shard=data.shard,
        aggregation_bits=attestation.aggregation_bits,
        inclusion_delay=state.slot - attestation_slot,
        proposer_index=get_beacon_proposer_index(state),
    )

    if data.target.epoch == get_current_epoch(state):
        assert data.source == state.current_justified_checkpoint
        state.current_epoch_attestations.append(pending_attestation)
    else:
        assert data.source == state.previous_justified_checkpoint
        state.previous_epoch_attestations.append(pending_attestation)

Fraud proofs

TODO. The intent is to have a single universal fraud proof type, which contains (i) an on-time attestation on shard s signing a set of data_roots, (ii) an index i of a particular data root to focus on, (iii) the full contents of the i'th data, (iii) a Merkle proof to the shard_state_roots in the parent block the attestation is referencing, and which then verifies that one of the two conditions is false:

  • custody_bits[i][j] != generate_custody_bit(subkey, block_contents) for any j
  • execute_state_transition(slot, shard, attestation.shard_state_roots[i-1], parent.shard_state_roots, block_contents) != shard_state_roots[i] (if i=0 then instead use parent.shard_state_roots[s])

For phase 1, we will use a simple state transition function:

  • Check that data[:32] == prev_state_root
  • Check that bls_verify(get_shard_proposer(state, slot, shard), hash_tree_root(data[-96:]), BLSSignature(data[-96:]), BLOCK_SIGNATURE_DOMAIN)
  • Output the new state root: hash_tree_root(prev_state_root, other_prev_state_roots, data)

Honest persistent committee member behavior

Suppose you are a persistent committee member on shard i at slot s. Suppose state.shard_next_slots[i] = s-1 ("the happy case"). In this case, you look for a valid proposal that satisfies the checks in the state transition function above, and if you see such a proposal data with post-state post_state, make an attestation with shard_data_roots = [hash_tree_root(data)] and shard_state_roots = [post_state]. If you do not find such a proposal, make an attestation using the "default empty proposal", data = prev_state_root + b'\x00' * 96.

Now suppose state.shard_next_slots[i] = s-k for k>1. Then, initialize data = [], states = [], state = state.shard_state_roots[i]. For slot in (state.shard_next_slot, min(state.shard_next_slot + MAX_CATCHUP, s)), do:

  • Look for all valid proposals for slot whose first 32 bytes equal to state. If there are none, add a default empty proposal to data. If there is one such proposal p, add p to data. If there is more than one, select the one with the largest number of total attestations supporting it or its descendants, and add it to data.
  • Set state to the state after processing the proposal just added to data; append it to states

Make an attestation using shard_data_roots = data and shard_state_roots = states.