26 KiB
Ethereum 2.0 Phase 1 -- Shard Data Chains
NOTICE: This document is a work-in-progress for researchers and implementers. It reflects recent spec changes and takes precedence over the Python proof-of-concept implementation.
At the current stage, Phase 1, while fundamentally feature-complete, is still subject to change. Development teams with spare resources may consider starting on the "Shard chains and crosslink data" section; at least basic properties, such as the fact that a shard block can get created every slot and is dependent on both a parent block in the same shard and a beacon chain block at or before that same slot, are unlikely to change, though details are likely to undergo similar kinds of changes to what Phase 0 has undergone since the start of the year.
Table of contents
- Ethereum 2.0 Phase 1 -- Shard Data Chains
Introduction
This document represents the specification for Phase 1 of Ethereum 2.0 -- Shard Data Chains. Phase 1 depends on the implementation of Phase 0 -- The Beacon Chain.
Ethereum 2.0 consists of a central beacon chain along with SHARD_COUNT
shard chains. Phase 1 is primarily concerned with the construction, validity, and consensus on the data of these shard chains. Phase 1 does not specify shard chain state execution or account balances. This is left for future phases.
Terminology
Constants
Phase 1 depends upon all of the constants defined in Phase 0 in addition to the following:
Misc
Name | Value | Unit |
---|---|---|
SHARD_CHUNK_SIZE |
2**5 (= 32) | bytes |
SHARD_BLOCK_SIZE |
2**14 (= 16,384) | bytes |
MINOR_REWARD_QUOTIENT |
2**8 (= 256) |
Time parameters
Name | Value | Unit | Duration |
---|---|---|---|
CROSSLINK_LOOKBACK |
2**5 (= 32) | slots | 3.2 minutes |
MAX_BRANCH_CHALLENGE_DELAY |
2**11 (= 2,048) | epochs | 9 days |
CUSTODY_PERIOD_LENGTH |
2**11 (= 2,048) | epochs | 9 days |
PERSISTENT_COMMITTEE_PERIOD |
2**11 (= 2,048) | epochs | 9 days |
CHALLENGE_RESPONSE_DEADLINE |
2**14 (= 16,384) | epochs | 73 days |
Max operations per block
Name | Value |
---|---|
MAX_BRANCH_CHALLENGES |
2**2 (= 4) |
MAX_BRANCH_RESPONSES |
2**4 (= 16) |
MAX_EARLY_SUBKEY_REVEALS |
2**4 (= 16) |
Signature domains
Name | Value |
---|---|
DOMAIN_SHARD_PROPOSER |
129 |
DOMAIN_SHARD_ATTESTER |
130 |
DOMAIN_CUSTODY_SUBKEY |
131 |
Shard chains and crosslink data
Helper functions
get_split_offset
def get_split_offset(list_size: int, chunks: int, index: int) -> int:
"""
Returns a value such that for a list L, chunk count k and index i,
split(L, k)[i] == L[get_split_offset(len(L), k, i): get_split_offset(len(L), k+1, i)]
"""
return (len(list_size) * index) // chunks
get_shuffled_committee
def get_shuffled_committee(state: BeaconState,
shard: Shard,
committee_start_epoch: Epoch) -> List[ValidatorIndex]:
"""
Return shuffled committee.
"""
validator_indices = get_active_validator_indices(state.validators, committee_start_epoch)
seed = generate_seed(state, committee_start_epoch)
start_offset = get_split_offset(len(validator_indices), SHARD_COUNT, shard)
end_offset = get_split_offset(len(validator_indices), SHARD_COUNT, shard + 1)
return [
validator_indices[get_permuted_index(i, len(validator_indices), seed)]
for i in range(start_offset, end_offset)
]
get_persistent_committee
def get_persistent_committee(state: BeaconState,
shard: Shard,
epoch: Epoch) -> List[ValidatorIndex]:
"""
Return the persistent committee for the given ``shard`` at the given ``epoch``.
"""
earlier_committee_start_epoch = epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD * 2
earlier_committee = get_shuffled_committee(state, shard, earlier_committee_start_epoch)
later_committee_start_epoch = epoch - (epoch % PERSISTENT_COMMITTEE_PERIOD) - PERSISTENT_COMMITTEE_PERIOD
later_committee = get_shuffled_committee(state, shard, later_committee_start_epoch)
def get_switchover_epoch(index):
return (
bytes_to_int(hash(earlier_seed + bytes3(index))[0:8]) %
PERSISTENT_COMMITTEE_PERIOD
)
# Take not-yet-cycled-out validators from earlier committee and already-cycled-in validators from
# later committee; return a sorted list of the union of the two, deduplicated
return sorted(list(set(
[i for i in earlier_committee if epoch % PERSISTENT_COMMITTEE_PERIOD < get_switchover_epoch(i)] +
[i for i in later_committee if epoch % PERSISTENT_COMMITTEE_PERIOD >= get_switchover_epoch(i)]
)))
get_shard_proposer_index
def get_shard_proposer_index(state: BeaconState,
shard: Shard,
slot: Slot) -> ValidatorIndex:
seed = hash(
state.current_shuffling_seed +
int_to_bytes8(shard) +
int_to_bytes8(slot)
)
persistent_committee = get_persistent_committee(state, shard, slot_to_epoch(slot))
# Default proposer
index = bytes_to_int(seed[0:8]) % len(persistent_committee)
# If default proposer exits, try the other proposers in order; if all are exited
# return None (ie. no block can be proposed)
validators_to_try = persistent_committee[index:] + persistent_committee[:index]
for index in validators_to_try:
if is_active_validator(state.validators[index], get_current_epoch(state)):
return index
return None
Data Structures
Shard chain blocks
A ShardBlock
object has the following fields:
{
# Slot number
'slot': 'uint64',
# What shard is it on
'shard_id': 'uint64',
# Parent block's root
'parent_root': 'bytes32',
# Beacon chain block
'beacon_chain_ref': 'bytes32',
# Merkle root of data
'data_root': 'bytes32'
# State root (placeholder for now)
'state_root': 'bytes32',
# Block signature
'signature': 'bytes96',
# Attestation
'participation_bitfield': 'bytes',
'aggregate_signature': 'bytes96',
}
Shard block processing
For a shard_block
on a shard to be processed by a node, the following conditions must be met:
- The
ShardBlock
pointed to byshard_block.parent_root
has already been processed and accepted - The signature for the block from the proposer (see below for definition) of that block is included along with the block in the network message object
To validate a block header on shard shard_block.shard_id
, compute as follows:
- Verify that
shard_block.beacon_chain_ref
is the hash of a block in the (canonical) beacon chain with slot less than or equal toslot
. - Verify that
shard_block.beacon_chain_ref
is equal to or a descendant of theshard_block.beacon_chain_ref
specified in theShardBlock
pointed to byshard_block.parent_root
. - Let
state
be the state of the beacon chain block referred to byshard_block.beacon_chain_ref
. - Let
persistent_committee = get_persistent_committee(state, shard_block.shard_id, slot_to_epoch(shard_block.slot))
. - Assert
verify_bitfield(shard_block.participation_bitfield, len(persistent_committee))
- For every
i in range(len(persistent_committee))
whereis_active_validator(state.validators[persistent_committee[i]], get_current_epoch(state))
returnsFalse
, verify thatget_bitfield_bit(shard_block.participation_bitfield, i) == 0
- Let
proposer_index = get_shard_proposer_index(state, shard_block.shard_id, shard_block.slot)
. - Verify that
proposer_index
is notNone
. - Let
msg
be theshard_block
but withshard_block.signature
set to[0, 0]
. - Verify that
bls_verify(pubkey=validators[proposer_index].pubkey, message_hash=hash(msg), signature=shard_block.signature, domain=get_domain(state, slot_to_epoch(shard_block.slot), DOMAIN_SHARD_PROPOSER))
passes. - Let
group_public_key = bls_aggregate_pubkeys([state.validators[index].pubkey for i, index in enumerate(persistent_committee) if get_bitfield_bit(shard_block.participation_bitfield, i) is True])
. - Verify that
bls_verify(pubkey=group_public_key, message_hash=shard_block.parent_root, sig=shard_block.aggregate_signature, domain=get_domain(state, slot_to_epoch(shard_block.slot), DOMAIN_SHARD_ATTESTER))
passes.
Verifying shard block data
At network layer, we expect a shard block header to be broadcast along with its block_body
.
- Verify that
len(block_body) == SHARD_BLOCK_SIZE
- Verify that
merkle_root(block_body)
equals thedata_root
in the header.
Verifying a crosslink
A node should sign a crosslink only if the following conditions hold. If a node has the capability to perform the required level of verification, it should NOT follow chains on which a crosslink for which these conditions do NOT hold has been included, or a sufficient number of signatures have been included that during the next state recalculation, a crosslink will be registered.
First, the conditions must recursively apply to the crosslink referenced in last_crosslink_root
for the same shard (unless last_crosslink_root
equals zero, in which case we are at the genesis).
Second, we verify the shard_chain_commitment
.
- Let
start_slot = state.latest_crosslinks[shard].epoch * SLOTS_PER_EPOCH + SLOTS_PER_EPOCH - CROSSLINK_LOOKBACK
. - Let
end_slot = attestation.data.slot - attestation.data.slot % SLOTS_PER_EPOCH - CROSSLINK_LOOKBACK
. - Let
length = end_slot - start_slot
,headers[0] .... headers[length-1]
be the serialized block headers in the canonical shard chain from the verifer's point of view (note that this implies thatheaders
andbodies
have been checked for validity). - Let
bodies[0] ... bodies[length-1]
be the bodies of the blocks. - Note: If there is a missing slot, then the header and body are the same as that of the block at the most recent slot that has a block.
We define two helpers:
def pad_to_power_of_2(values: List[bytes]) -> List[bytes]:
zero_shard_block = b'\x00' * SHARD_BLOCK_SIZE
while not is_power_of_two(len(values)):
values = values + [zero_shard_block]
return values
def merkle_root_of_bytes(data: bytes) -> bytes:
return merkle_root([data[i:i + 32] for i in range(0, len(data), 32)])
We define the function for computing the commitment as follows:
def compute_commitment(headers: List[ShardBlock], bodies: List[bytes]) -> Bytes32:
return hash(
merkle_root(
pad_to_power_of_2([
merkle_root_of_bytes(zpad(serialize(h), SHARD_BLOCK_SIZE)) for h in headers
])
) +
merkle_root(
pad_to_power_of_2([
merkle_root_of_bytes(h) for h in bodies
])
)
)
The shard_chain_commitment
is only valid if it equals compute_commitment(headers, bodies)
.
Shard block fork choice rule
The fork choice rule for any shard is LMD GHOST using the shard chain attestations of the persistent committee and the beacon chain attestations of the crosslink committee currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the latest block referenced in the most recent accepted crosslink (ie. state.crosslinks[shard].crosslink_data_root
). Only blocks whose beacon_chain_ref
is the block in the main beacon chain at the specified slot
should be considered (if the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than a slot).
Updates to the beacon chain
Data structures
Validator
Add member values to the end of the Validator
object:
'open_branch_challenges': [BranchChallengeRecord],
'next_subkey_to_reveal': 'uint64',
'reveal_max_periods_late': 'uint64',
And the initializers:
'open_branch_challenges': [],
'next_subkey_to_reveal': get_current_custody_period(state),
'reveal_max_periods_late': 0,
BeaconBlockBody
Add member values to the BeaconBlockBody
structure:
'branch_challenges': [BranchChallenge],
'branch_responses': [BranchResponse],
'subkey_reveals': [SubkeyReveal],
And initialize to the following:
'branch_challenges': [],
'branch_responses': [],
'subkey_reveals': [],
BranchChallenge
Define a BranchChallenge
as follows:
{
'responder_index': 'uint64',
'data_index': 'uint64',
'attestation': SlashableAttestation,
}
BranchResponse
Define a BranchResponse
as follows:
{
'responder_index': 'uint64',
'data': 'bytes32',
'branch': ['bytes32'],
'data_index': 'uint64',
'root': 'bytes32',
}
BranchChallengeRecord
Define a BranchChallengeRecord
as follows:
{
'challenger_index': 'uint64',
'root': 'bytes32',
'depth': 'uint64',
'inclusion_epoch': 'uint64',
'data_index': 'uint64',
}
SubkeyReveal
Define a SubkeyReveal
as follows:
{
'validator_index': 'uint64',
'period': 'uint64',
'subkey': 'bytes96',
'mask': 'bytes32',
'revealer_index': 'uint64'
}
Helpers
get_attestation_merkle_depth
def get_attestation_merkle_depth(attestation: Attestation) -> int:
start_epoch = attestation.data.latest_crosslink.epoch
end_epoch = slot_to_epoch(attestation.data.slot)
chunks_per_slot = SHARD_BLOCK_SIZE // 32
chunks = (end_epoch - start_epoch) * EPOCH_LENGTH * chunks_per_slot
return log2(next_power_of_two(chunks))
epoch_to_custody_period
def epoch_to_custody_period(epoch: Epoch) -> int:
return epoch // CUSTODY_PERIOD_LENGTH
slot_to_custody_period
def slot_to_custody_period(slot: Slot) -> int:
return epoch_to_custody_period(slot_to_epoch(slot))
get_current_custody_period
def get_current_custody_period(state: BeaconState) -> int:
return epoch_to_custody_period(get_current_epoch(state))
verify_custody_subkey_reveal
def verify_custody_subkey_reveal(pubkey: bytes48,
subkey: bytes96,
mask: bytes32,
mask_pubkey: bytes48,
period: int) -> bool:
# Legitimate reveal: checking that the provided value actually is the subkey
if mask == ZERO_HASH:
pubkeys=[pubkey]
message_hashes=[hash(int_to_bytes8(period))]
# Punitive early reveal: checking that the provided value is a valid masked subkey
# (masking done to prevent "stealing the reward" from a whistleblower by block proposers)
# Secure under the aggregate extraction infeasibility assumption described on page 11-12
# of https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
else:
pubkeys=[pubkey, mask_pubkey]
message_hashes=[hash(int_to_bytes8(period)), mask]
return bls_multi_verify(
pubkeys=pubkeys,
message_hashes=message_hashes,
signature=subkey,
domain=get_domain(
fork=state.fork,
epoch=period * CUSTODY_PERIOD_LENGTH,
domain_type=DOMAIN_CUSTODY_SUBKEY,
)
)
penalize_validator
Change the definition of penalize_validator
as follows:
def penalize_validator(state: BeaconState, index: ValidatorIndex, whistleblower_index=None:ValidatorIndex) -> None:
"""
Penalize the validator of the given ``index``.
Note that this function mutates ``state``.
"""
exit_validator(state, index)
validator = state.validator_registry[index]
state.latest_penalized_balances[get_current_epoch(state) % LATEST_PENALIZED_EXIT_LENGTH] += get_effective_balance(state, index)
block_proposer_index = get_beacon_proposer_index(state, state.slot)
whistleblower_reward = get_effective_balance(state, index) // WHISTLEBLOWER_REWARD_QUOTIENT
if whistleblower_index is None:
state.validator_balances[block_proposer_index] += whistleblower_reward
else:
state.validator_balances[whistleblower_index] += (
whistleblower_reward * INCLUDER_REWARD_QUOTIENT / (INCLUDER_REWARD_QUOTIENT + 1)
)
state.validator_balances[block_proposer_index] += whistleblower_reward / (INCLUDER_REWARD_QUOTIENT + 1)
state.validator_balances[index] -= whistleblower_reward
validator.penalized_epoch = get_current_epoch(state)
validator.withdrawable_epoch = get_current_epoch(state) + LATEST_PENALIZED_EXIT_LENGTH
The only change is that this introduces the possibility of a penalization where the "whistleblower" that takes credit is NOT the block proposer.
Per-slot processing
Operations
Add the following operations to the per-slot processing, in order the given below and after all other operations (specifically, right after exits).
Branch challenges
Verify that len(block.body.branch_challenges) <= MAX_BRANCH_CHALLENGES
.
For each challenge
in block.body.branch_challenges
:
- Verify that
slot_to_epoch(challenge.attestation.data.slot) >= get_current_epoch(state) - MAX_BRANCH_CHALLENGE_DELAY
. - Verify that
state.validator_registry[responder_index].exit_epoch >= get_current_epoch(state) - MAX_BRANCH_CHALLENGE_DELAY
. - Verify that
verify_slashable_attestation(state, challenge.attestation)
returnsTrue
. - Verify that
challenge.responder_index
is inchallenge.attestation.validator_indices
. - Let
depth = get_attestation_merkle_depth(challenge.attestation)
. Verify thatchallenge.data_index < 2**depth
. - Verify that there does not exist a
BranchChallengeRecord
instate.validator_registry[challenge.responder_index].open_branch_challenges
withroot == challenge.attestation.data.shard_chain_commitment
anddata_index == data_index
. - Append to
state.validator_registry[challenge.responder_index].open_branch_challenges
the objectBranchChallengeRecord(challenger_index=get_beacon_proposer_index(state, state.slot), root=challenge.attestation.data.shard_chain_commitment, depth=depth, inclusion_epoch=get_current_epoch(state), data_index=data_index)
.
Invariant: the open_branch_challenges
array will always stay sorted in order of inclusion_epoch
.
Branch responses
Verify that len(block.body.branch_responses) <= MAX_BRANCH_RESPONSES
.
For each response
in block.body.branch_responses
:
- Find the
BranchChallengeRecord
instate.validator_registry[response.responder_index].open_branch_challenges
whose (root
,data_index
) match the (root
,data_index
) of theresponse
. Verify that one such record exists (it is not possible for there to be more than one), call itrecord
. - Verify that
verify_merkle_branch(leaf=response.data, branch=response.branch, depth=record.depth, index=record.data_index, root=record.root)
is True. - Verify that
get_current_epoch(state) >= record.inclusion_epoch + ENTRY_EXIT_DELAY
. - Remove the
record
fromstate.validator_registry[response.responder_index].open_branch_challenges
- Determine the proposer
proposer_index = get_beacon_proposer_index(state, state.slot)
and setstate.validator_balances[proposer_index] += base_reward(state, index) // MINOR_REWARD_QUOTIENT
.
Subkey reveals
Verify that len(block.body.early_subkey_reveals) <= MAX_EARLY_SUBKEY_REVEALS
.
For each reveal
in block.body.early_subkey_reveals
:
- Verify that
verify_custody_subkey_reveal(state.validator_registry[reveal.validator_index].pubkey, reveal.subkey, reveal.period, reveal.mask, state.validator_registry[reveal.revealer_index].pubkey)
returnsTrue
. - Let
is_early_reveal = reveal.period > get_current_custody_period(state) or (reveal.period == get_current_custody_period(state) and state.validator_registry[reveal.validator_index].exit_epoch > get_current_epoch(state))
(ie. either the reveal is of a future period, or it's of the current period and the validator is still active) - Verify that one of the following is true:
- (i)
is_early_reveal
isTrue
- (ii)
is_early_reveal
isFalse
andreveal.period == state.validator_registry[reveal.validator_index].next_subkey_to_reveal
(revealing a past subkey, or a current subkey for a validator that has exited) andreveal.mask == ZERO_HASH
- (i)
In case (i):
- Verify that `state.validator_registry[reveal.validator_index].penalized_epoch > get_current_epoch(state).
- Run
penalize_validator(state, reveal.validator_index, reveal.revealer_index)
. - Set
state.validator_balances[reveal.revealer_index] += base_reward(state, index) // MINOR_REWARD_QUOTIENT
In case (ii):
- Determine the proposer
proposer_index = get_beacon_proposer_index(state, state.slot)
and setstate.validator_balances[proposer_index] += base_reward(state, index) // MINOR_REWARD_QUOTIENT
. - Set
state.validator_registry[reveal.validator_index].next_subkey_to_reveal += 1
- Set
state.validator_registry[reveal.validator_index].reveal_max_periods_late = max(state.validator_registry[reveal.validator_index].reveal_max_periods_late, get_current_period(state) - reveal.period)
.
Per-epoch processing
Add the following loop immediately below the process_ejections
loop:
def process_challenge_absences(state: BeaconState) -> None:
"""
Iterate through the validator registry
and penalize validators with balance that did not answer challenges.
"""
for index, validator in enumerate(state.validator_registry):
if len(validator.open_branch_challenges) > 0 and get_current_epoch(state) > validator.open_branch_challenges[0].inclusion_epoch + CHALLENGE_RESPONSE_DEADLINE:
penalize_validator(state, index, validator.open_branch_challenges[0].challenger_index)
In process_penalties_and_exits
, change the definition of eligible
to the following (note that it is not a pure function because state
is declared in the surrounding scope):
def eligible(index):
validator = state.validator_registry[index]
# Cannot exit if there are still open branch challenges
if len(validator.open_branch_challenges) > 0:
return False
# Cannot exit if you have not revealed all of your subkeys
elif validator.next_subkey_to_reveal <= epoch_to_custody_period(validator.exit_epoch):
return False
# Cannot exit if you already have
elif validator.withdrawable_epoch < FAR_FUTURE_EPOCH:
return False
# Return minimum time
else:
return current_epoch >= validator.exit_epoch + MIN_VALIDATOR_WITHDRAWAL_EPOCHS
One-time phase 1 initiation transition
Run the following on the fork block after per-slot processing and before per-block and per-epoch processing.
For all validator
in ValidatorRegistry
, update it to the new format and fill the new member values with:
'open_branch_challenges': [],
'next_subkey_to_reveal': get_current_custody_period(state),
'reveal_max_periods_late': 0,