eth2.0-specs/specs/core/1_shard-data-chains.md
2019-08-29 16:36:13 +01:00

17 KiB

Ethereum 2.0 Phase 1 -- Shard Data Chains

Notice: This document is a work-in-progress for researchers and implementers.

Table of contents

Introduction

This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.

Custom types

Name SSZ equivalent Description
ShardSlot uint64 a shard slot number

Configuration

Misc

Name Value
MIN_BLOCK_SIZE_PRICE 2**0 (= 1)
MAX_PERIOD_COMMITTEE_SIZE 2**7 (= 128)
SHARD_HEADER_SIZE 2**9 (= 512)
SHARD_BLOCK_SIZE_TARGET 2**14 (= 16,384)
SHARD_BLOCK_SIZE_LIMIT 2**16 (= 65,536)

Initial values

Name Value
SHARD_GENESIS_EPOCH TBD

Time parameters

Name Value Unit Duration
SHARD_SLOTS_PER_EPOCH 2**7 (= 128) shard slots 6.4 minutes
EPOCHS_PER_SHARD_PERIOD 2**8 (= 256) epochs ~27 hours

State list lengths

Name Value Unit
HISTORY_ACCUMULATOR_VECTOR 2**6 (= 64) state tree maximum depth

Rewards and penalties

Name Value
BLOCK_SIZE_PRICE_QUOTIENT 2**3 (= 8)

Signature domain types

Name Value
DOMAIN_SHARD_PROPOSER 128
DOMAIN_SHARD_ATTESTER 129

Containers

ShardBlockSignatures

class ShardBlockSignatures(Container):
    attesters: BLSSignature
    proposer: BLSSignature

ShardBlockData

class ShardBlockData(Container):
    slot: ShardSlot
    beacon_block_root: Hash
    parent_root: Hash
    state_root: Hash
    aggregation_bits: Bitvector[2 * MAX_PERIOD_COMMITTEE_SIZE]
    block_size_sum: uint64
    body: List[byte, SHARD_BLOCK_SIZE_LIMIT - SHARD_HEADER_SIZE]

ShardBlock

class ShardBlock(Container):
    data: ShardBlockData
    signatures: ShardBlockSignatures

ShardBlockHeaderData

class ShardBlockHeaderData(Container):
    slot: ShardSlot
    beacon_block_root: Hash
    parent_root: Hash
    state_root: Hash
    aggregation_bits: Bitvector[2 * MAX_PERIOD_COMMITTEE_SIZE]
    block_size_sum: uint64
    body_root: Hash

ShardBlockHeader

class ShardBlockHeader(Container):
    data: ShardBlockHeaderData
    signatures: ShardBlockSignatures

ShardState

class ShardState(Container):
    shard: Shard
    slot: ShardSlot
    history_accumulator: Vector[Hash, HISTORY_ACCUMULATOR_VECTOR]
    latest_block_header_data: ShardBlockHeader
    block_size_sum: uint64
    # Fees and rewards
    block_size_price: Gwei
    older_committee_fees: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
    newer_committee_fees: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
    older_committee_rewards: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]
    newer_committee_rewards: List[Gwei, MAX_PERIOD_COMMITTEE_SIZE]

ShardCheckpoint

class ShardCheckpoint(Container):
    slot: ShardSlot
    parent_root: Hash

Helper functions

Misc

compute_epoch_of_shard_slot

def compute_epoch_of_shard_slot(slot: ShardSlot) -> Epoch:
    return compute_epoch_of_slot(slot // SHARD_SLOTS_PER_EPOCH)

compute_shard_period_start_epoch

def compute_shard_period_start_epoch(epoch: Epoch, lookback: uint64) -> Epoch:
    return Epoch(epoch - (epoch % EPOCHS_PER_SHARD_PERIOD) - lookback * EPOCHS_PER_SHARD_PERIOD)

Beacon state accessors

get_period_committee

def get_period_committee(state: BeaconState, shard: Shard, epoch: Epoch) -> Sequence[ValidatorIndex]:
    active_validator_indices = get_active_validator_indices(state, epoch)
    seed = get_seed(state, epoch)
    return compute_committee(active_validator_indices, seed, shard, SHARD_COUNT)[:MAX_PERIOD_COMMITTEE_SIZE]

get_shard_committee

def get_shard_committee(state: BeaconState, shard: Shard, epoch: Epoch) -> Sequence[ValidatorIndex]:
    older_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(epoch, 2))
    newer_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(epoch, 1))
    # Every epoch cycle out validators from the older committee and cycle in validators from the newer committee
    older_subcommittee = [i for i in older_committee if i % EPOCHS_PER_SHARD_PERIOD > epoch % EPOCHS_PER_SHARD_PERIOD]
    newer_subcommittee = [i for i in newer_committee if i % EPOCHS_PER_SHARD_PERIOD <= epoch % EPOCHS_PER_SHARD_PERIOD]
    return older_subcommittee + newer_subcommittee

get_shard_proposer_index

def get_shard_proposer_index(state: BeaconState, shard: Shard, slot: ShardSlot) -> ValidatorIndex:
    epoch = get_current_epoch(state)
    active_indices = [i for i in get_shard_committee(state, shard, epoch) if is_active_validator(state.validators[i], epoch)]
    seed = hash(get_seed(state, epoch) + int_to_bytes(slot, length=8) + int_to_bytes(shard, length=8))
    compute_proposer_index(state, active_indices, seed)

Shard state mutators

add_reward

def add_reward(state: BeaconState, shard_state: ShardState, index: ValidatorIndex, delta: Gwei) -> None:
    epoch = compute_epoch_of_shard_slot(state.slot)
    older_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 2))
    newer_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 1))
    if index in older_committee:
        shard_state.older_committee_rewards[older_committee.index(index)] += delta
    elif index in newer_committee:
        shard_state.newer_committee_rewards[newer_committee.index(index)] += delta

add_fee

def add_fee(state: BeaconState, shard_state: ShardState, index: ValidatorIndex, delta: Gwei) -> None:
    epoch = compute_epoch_of_shard_slot(state.slot)
    older_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 2))
    newer_committee = get_period_committee(state, shard_state.shard, compute_shard_period_start_epoch(epoch, 1))
    if index in older_committee:
        shard_state.older_committee_fees[older_committee.index(index)] += delta
    elif index in newer_committee:
        shard_state.newer_committee_fees[newer_committee.index(index)] += delta

Genesis

get_genesis_shard_state

def get_genesis_shard_state(state: BeaconState, shard: Shard) -> ShardState:
    older_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(SHARD_GENESIS_EPOCH, 2))
    newer_committee = get_period_committee(state, shard, compute_shard_period_start_epoch(SHARD_GENESIS_EPOCH, 1))
    return ShardState(
        shard=shard,
        slot=ShardSlot(SHARD_GENESIS_EPOCH * SHARD_SLOTS_PER_EPOCH),
        block_size_price=MIN_BLOCK_SIZE_PRICE,
        older_committee_rewards=[Gwei(0) for _ in range(len(older_committee))],
        newer_committee_rewards=[Gwei(0) for _ in range(len(newer_committee))],
        older_committee_fees=[Gwei(0) for _ in range(len(older_committee))],
        newer_committee_fees=[Gwei(0) for _ in range(len(newer_committee))],
    )

get_genesis_shard_block

def get_genesis_shard_block(state: BeaconState, shard: Shard) -> ShardBlock:
    return ShardBlock(data=ShardBlockData(
        shard=shard,
        slot=ShardSlot(SHARD_GENESIS_EPOCH * SHARD_SLOTS_PER_EPOCH),
        state_root=hash_tree_root(get_genesis_shard_state(state, shard)),
    ))

Shard state transition function

def shard_state_transition(state: BeaconState,
                           shard_state: ShardState,
                           block: ShardBlock,
                           validate_state_root: bool=False) -> ShardState:
    # Process slots (including those with no blocks) since block
    process_shard_slots(state, shard_state, block.data.slot)
    # Process block
    process_shard_block(state, shard_state, block)
    # Validate state root (`validate_state_root == True` in production)
    if validate_state_root:
        assert block.data.state_root == hash_tree_root(shard_state)
    # Return post-state
    return shard_state
def process_shard_slots(state: BeaconState, shard_state: ShardState, slot: ShardSlot) -> None:
    assert shard_state.slot <= slot
    while shard_state.slot < slot:
        process_shard_slot(state, shard_state)
        # Process period on the start slot of the next period
        if (shard_state.slot + 1) % (SHARD_SLOTS_PER_EPOCH * EPOCHS_PER_SHARD_PERIOD) == 0:
            process_shard_period(state, shard_state)
        shard_state.slot += ShardSlot(1)
def process_shard_slot(state: BeaconState, shard_state: ShardState) -> None:
    # Cache state root
    previous_state_root = hash_tree_root(state)
    if state.latest_block_header_data.state_root == Bytes32():
        state.latest_block_header_data.state_root = previous_state_root
    # Cache state root in history accumulator
    depth = 0
    while state.slot % 2**depth == 0 and depth < HISTORY_ACCUMULATOR_VECTOR:
        state.history_accumulator[depth] = previous_state_root
        depth += 1

Period processing

def process_shard_period(shard_state: ShardState, state: BeaconState) -> None:
    # Rotate rewards and fees
    epoch = compute_epoch_of_shard_slot(state.slot)
    newer_committee = get_period_committee(state, state.shard, compute_shard_period_start_epoch(epoch, 1))
    state.older_committee_rewards = state.newer_committee_rewards
    state.newer_committee_rewards = [Gwei(0) for _ in range(len(newer_committee))]
    state.older_committee_fees = state.newer_committee_fees
    state.newer_committee_fees = [Gwei(0) for _ in range(len(newer_committee))]

Block processing

def process_shard_block(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
    process_shard_block_header(state, shard_state, block)
    process_shard_attestations(state, shard_state, block)
    process_shard_block_size_fee(state, shard_state, block)

Block header

def process_shard_block_header(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
    # Verify that the slots match
    data = block.data
    assert data.slot == state.slot
    # Verify that the beacon chain root matches
    parent_epoch = compute_epoch_of_shard_slot(state.latest_block_header_data.slot)
    assert data.beacon_block_root == get_block_root(state, parent_epoch)
    # Verify that the parent matches
    assert data.parent_root == hash_tree_root(state.latest_block_header_data)
    # Save current block as the new latest block
    state.latest_block_header_data = ShardBlockHeaderData(
        slot=data.slot,
        beacon_block_root=data.beacon_block_root,
        parent_root=data.parent_root,
        # `state_root` is zeroed and overwritten in the next `process_shard_slot` call
        aggregation_bits=data.aggregation_bits,
        block_size_sum=data.block_size_sum,
        body_root=hash_tree_root(data.body),
    )
    # Verify proposer signature
    proposer_index = get_shard_proposer_index(state, state.shard, data.slot)
    pubkey = state.validators[proposer_index].pubkey
    domain = get_domain(state, DOMAIN_SHARD_PROPOSER, compute_epoch_of_shard_slot(data.slot))
    assert bls_verify(pubkey, hash_tree_root(block.data), block.signatures.proposer, domain)
    # Verify body size is a multiple of the header size
    assert len(data.body) % SHARD_HEADER_SIZE == 0
    # Verify the sum of the block sizes since genesis
    state.block_size_sum += SHARD_HEADER_SIZE + len(data.body)
    assert data.block_size_sum == state.block_size_sum

Attestations

def process_shard_attestations(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
    data = block.data
    pubkeys = []
    attestation_count = 0
    shard_committee = get_shard_committee(state, state.shard, data.slot)
    for i, validator_index in enumerate(shard_committee):
        if data.aggregation_bits[i]:
            pubkeys.append(state.validators[validator_index].pubkey)
            add_reward(state, shard_state, validator_index, get_base_reward(state, validator_index))
            attestation_count += 1
    # Verify there are no extraneous bits set beyond the shard committee
    for i in range(len(shard_committee), 2 * MAX_PERIOD_COMMITTEE_SIZE):
        assert data.aggregation_bits[i] == 0b0
    # Verify attester aggregate signature
    domain = get_domain(state, DOMAIN_SHARD_ATTESTER, compute_epoch_of_shard_slot(data.slot))
    message = hash_tree_root(ShardCheckpoint(shard_state.slot, data.parent_root))
    assert bls_verify(bls_aggregate_pubkeys(pubkeys), message, block.signatures.attesters, domain)
    # Proposer micro-reward
    proposer_index = get_shard_proposer_index(state, state.shard, data.slot)
    reward = attestation_count * get_base_reward(state, proposer_index) // PROPOSER_REWARD_QUOTIENT
    add_reward(state, shard_state, proposer_index, reward)

Block size fee

def process_shard_block_size_fee(state: BeaconState, shard_state: ShardState, block: ShardBlock) -> None:
    # Charge proposer block size fee
    proposer_index = get_shard_proposer_index(state, state.shard, block.data.slot)
    block_size = SHARD_HEADER_SIZE + len(block.data.body)
    add_fee(state, shard_state, proposer_index, state.block_size_price * block_size // SHARD_BLOCK_SIZE_LIMIT)
    # Calculate new block size price
    if block_size > SHARD_BLOCK_SIZE_TARGET:
        size_delta = block_size - SHARD_BLOCK_SIZE_TARGET
        price_delta = Gwei(state.block_size_price * size_delta // SHARD_BLOCK_SIZE_LIMIT // BLOCK_SIZE_PRICE_QUOTIENT)
        # The maximum gas price caps the amount burnt on gas fees within a period to 32 ETH
        MAX_BLOCK_SIZE_PRICE = MAX_EFFECTIVE_BALANCE // EPOCHS_PER_SHARD_PERIOD // SHARD_SLOTS_PER_EPOCH
        state.block_size_price = min(MAX_BLOCK_SIZE_PRICE, state.block_size_price + price_delta)
    else:
        size_delta = SHARD_BLOCK_SIZE_TARGET - block_size
        price_delta = Gwei(state.block_size_price * size_delta // SHARD_BLOCK_SIZE_LIMIT // BLOCK_SIZE_PRICE_QUOTIENT)
        state.block_size_price = max(MIN_BLOCK_SIZE_PRICE, state.block_size_price - price_delta)

Shard fork choice rule

The fork choice rule for any shard is LMD GHOST using the shard attestations of the shard committee and the beacon chain attestations of the crosslink committee currently assigned to that shard, but instead of being rooted in the genesis it is rooted in the block referenced in the most recent accepted crosslink (i.e. state.crosslinks[shard].shard_block_root). Only blocks whose beacon_block_root is the block in the main beacon chain at the specified slot should be considered. (If the beacon chain skips a slot, then the block at that slot is considered to be the block in the beacon chain at the highest slot lower than that slot.)