89 KiB
Ethereum 2.0 Phase 0 -- The Beacon Chain
NOTICE: This document is a work-in-progress for researchers and implementers. It reflects recent spec changes and takes precedence over the Python proof-of-concept implementation [python-poc].
Table of contents
- Ethereum 2.0 Phase 0 -- The Beacon Chain
- Table of contents
- Introduction
- Notation
- Terminology
- Constants
- Data structures
- Custom Types
- Helper functions
hash
hash_tree_root
slot_to_epoch
get_previous_epoch
get_current_epoch
get_epoch_start_slot
is_active_validator
get_active_validator_indices
get_permuted_index
split
get_epoch_committee_count
get_shuffling
get_previous_epoch_committee_count
get_current_epoch_committee_count
get_next_epoch_committee_count
get_crosslink_committees_at_slot
get_block_root
get_randao_mix
get_active_index_root
generate_seed
get_beacon_proposer_index
merkle_root
get_attestation_participants
is_power_of_two
int_to_bytes1
,int_to_bytes2
, ...bytes_to_int
get_effective_balance
get_total_balance
get_fork_version
get_domain
get_bitfield_bit
verify_bitfield
verify_slashable_attestation
is_double_vote
is_surround_vote
integer_squareroot
get_delayed_activation_exit_epoch
bls_verify
bls_verify_multiple
bls_aggregate_pubkeys
process_deposit
- Routines for updating validator status
- Ethereum 1.0 deposit contract
- On genesis
- Beacon chain processing
- Beacon chain state transition function
- References
- Copyright
Introduction
This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.
At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0 the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when Ethereum 1.0 deposit receipts are processed by the beacon chain, the activation balance is reached, and after a queuing process. Exit is either voluntary or done forcibly as a penalty for misbehavior.
The primary source of load on the beacon chain is "attestations". Attestations are availability votes for a shard block, and simultaneously proof of stake votes for a beacon block. A sufficient number of attestations for the same shard block create a "crosslink", confirming the shard segment up to that shard block into the beacon chain. Crosslinks also serve as infrastructure for asynchronous cross-shard communication.
Notation
Code snippets appearing in this style
are to be interpreted as Python code.
Terminology
- Validator - a registered participant in the beacon chain. You can become one by sending Ether into the Ethereum 1.0 deposit contract.
- Active validator - an active participant in the Ethereum 2.0 consensus invited to, among other things, propose and attest to blocks and vote for crosslinks.
- Committee - a (pseudo-) randomly sampled subset of active validators. When a committee is referred to collectively, as in "this committee attests to X", this is assumed to mean "some subset of that committee that contains enough validators that the protocol recognizes it as representing the committee".
- Proposer - the validator that creates a beacon chain block
- Attester - a validator that is part of a committee that needs to sign off on a beacon chain block while simultaneously creating a link (crosslink) to a recent shard block on a particular shard chain.
- Beacon chain - the central PoS chain that is the base of the sharding system.
- Shard chain - one of the chains on which user transactions take place and account data is stored.
- Block root - a 32-byte Merkle root of a beacon chain block or shard chain block. Previously called "block hash".
- Crosslink - a set of signatures from a committee attesting to a block in a shard chain, which can be included into the beacon chain. Crosslinks are the main means by which the beacon chain "learns about" the updated state of shard chains.
- Slot - a period during which one proposer has the ability to create a beacon chain block and some attesters have the ability to make attestations
- Epoch - an aligned span of slots during which all validators get exactly one chance to make an attestation
- Finalized, justified - see Casper FFG finalization [casper-ffg]
- Withdrawal period - the number of slots between a validator exit and the validator balance being withdrawable
- Genesis time - the Unix time of the genesis beacon chain block at slot 0
Constants
Misc
Name | Value |
---|---|
SHARD_COUNT |
2**10 (= 1,024) |
TARGET_COMMITTEE_SIZE |
2**7 (= 128) |
MAX_BALANCE_CHURN_QUOTIENT |
2**5 (= 32) |
BEACON_CHAIN_SHARD_NUMBER |
2**64 - 1 |
MAX_INDICES_PER_SLASHABLE_VOTE |
2**12 (= 4,096) |
MAX_EXIT_DEQUEUES_PER_EPOCH |
2**2 (= 4) |
SHUFFLE_ROUND_COUNT |
90 |
- For the safety of crosslinks
TARGET_COMMITTEE_SIZE
exceeds the recommended minimum committee size of 111; with sufficient active validators (at leastSLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE
), the shuffling algorithm ensures committee sizes at leastTARGET_COMMITTEE_SIZE
. (Unbiasable randomness with a Verifiable Delay Function (VDF) will improve committee robustness and lower the safe minimum committee size.)
Deposit contract
Name | Value |
---|---|
DEPOSIT_CONTRACT_ADDRESS |
TBD |
DEPOSIT_CONTRACT_TREE_DEPTH |
2**5 (= 32) |
Gwei values
Name | Value | Unit |
---|---|---|
MIN_DEPOSIT_AMOUNT |
2**0 * 1e9 (= 1,000,000,000) |
Gwei |
MAX_DEPOSIT_AMOUNT |
2**5 * 1e9 (= 32,000,000,000) |
Gwei |
FORK_CHOICE_BALANCE_INCREMENT |
2**0 * 1e9 (= 1,000,000,000) |
Gwei |
EJECTION_BALANCE |
2**4 * 1e9 (= 16,000,000,000) |
Gwei |
Initial values
Name | Value |
---|---|
GENESIS_FORK_VERSION |
0 |
GENESIS_SLOT |
2**32 |
GENESIS_EPOCH |
slot_to_epoch(GENESIS_SLOT) |
GENESIS_START_SHARD |
0 |
FAR_FUTURE_EPOCH |
2**64 - 1 |
ZERO_HASH |
int_to_bytes32(0) |
EMPTY_SIGNATURE |
int_to_bytes96(0) |
BLS_WITHDRAWAL_PREFIX_BYTE |
int_to_bytes1(0) |
GENESIS_SLOT
should be at least as large in terms of time as the largest of the time parameters or state list lengths below (ie. it should be at least as large as any value measured in slots, and at leastSLOTS_PER_EPOCH
times as large as any value measured in epochs).
Time parameters
Name | Value | Unit | Duration |
---|---|---|---|
SECONDS_PER_SLOT |
6 |
seconds | 6 seconds |
MIN_ATTESTATION_INCLUSION_DELAY |
2**2 (= 4) |
slots | 24 seconds |
SLOTS_PER_EPOCH |
2**6 (= 64) |
slots | 6.4 minutes |
MIN_SEED_LOOKAHEAD |
2**0 (= 1) |
epochs | 6.4 minutes |
ACTIVATION_EXIT_DELAY |
2**2 (= 4) |
epochs | 25.6 minutes |
EPOCHS_PER_ETH1_VOTING_PERIOD |
2**4 (= 16) |
epochs | ~1.7 hours |
MIN_VALIDATOR_WITHDRAWABILITY_DELAY |
2**8 (= 256) |
epochs | ~27 hours |
State list lengths
Name | Value | Unit | Duration |
---|---|---|---|
LATEST_BLOCK_ROOTS_LENGTH |
2**13 (= 8,192) |
slots | ~13 hours |
LATEST_RANDAO_MIXES_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
LATEST_ACTIVE_INDEX_ROOTS_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
LATEST_SLASHED_EXIT_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
Reward and penalty quotients
Name | Value |
---|---|
BASE_REWARD_QUOTIENT |
2**5 (= 32) |
WHISTLEBLOWER_REWARD_QUOTIENT |
2**9 (= 512) |
ATTESTATION_INCLUSION_REWARD_QUOTIENT |
2**3 (= 8) |
INACTIVITY_PENALTY_QUOTIENT |
2**24 (= 16,777,216) |
MIN_PENALTY_QUOTIENT |
2**5 (= 32) |
- The
BASE_REWARD_QUOTIENT
parameter dictates the per-epoch reward. It corresponds to ~2.54% annual interest assuming 10 million participating ETH in every epoch. - The
INACTIVITY_PENALTY_QUOTIENT
equalsINVERSE_SQRT_E_DROP_TIME**2
whereINVERSE_SQRT_E_DROP_TIME := 2**12 epochs
(~18 days) is the time it takes the inactivity penalty to reduce the balance of non-participating validators to about1/sqrt(e) ~= 60.6%
. Indeed, the balance retained by offline validators aftern
epochs is about(1-1/INACTIVITY_PENALTY_QUOTIENT)**(n**2/2)
so afterINVERSE_SQRT_E_DROP_TIME
epochs it is roughly(1-1/INACTIVITY_PENALTY_QUOTIENT)**(INACTIVITY_PENALTY_QUOTIENT/2) ~= 1/sqrt(e)
.
Max transactions per block
Name | Value |
---|---|
MAX_PROPOSER_SLASHINGS |
2**4 (= 16) |
MAX_ATTESTER_SLASHINGS |
2**0 (= 1) |
MAX_ATTESTATIONS |
2**7 (= 128) |
MAX_DEPOSITS |
2**4 (= 16) |
MAX_VOLUNTARY_EXITS |
2**4 (= 16) |
MAX_TRANSFERS |
2**4 (= 16) |
Signature domains
Name | Value |
---|---|
DOMAIN_DEPOSIT |
0 |
DOMAIN_ATTESTATION |
1 |
DOMAIN_PROPOSAL |
2 |
DOMAIN_EXIT |
3 |
DOMAIN_RANDAO |
4 |
DOMAIN_TRANSFER |
5 |
Data structures
The following data structures are defined as SimpleSerialize (SSZ) objects.
Beacon chain transactions
Proposer slashings
ProposerSlashing
{
# Proposer index
'proposer_index': 'uint64',
# First proposal
'proposal_1': Proposal,
# Second proposal
'proposal_2': Proposal,
}
Attester slashings
AttesterSlashing
{
# First slashable attestation
'slashable_attestation_1': SlashableAttestation,
# Second slashable attestation
'slashable_attestation_2': SlashableAttestation,
}
SlashableAttestation
{
# Validator indices
'validator_indices': ['uint64'],
# Attestation data
'data': AttestationData,
# Custody bitfield
'custody_bitfield': 'bytes',
# Aggregate signature
'aggregate_signature': 'bytes96',
}
Attestations
Attestation
{
# Attester aggregation bitfield
'aggregation_bitfield': 'bytes',
# Attestation data
'data': AttestationData,
# Custody bitfield
'custody_bitfield': 'bytes',
# BLS aggregate signature
'aggregate_signature': 'bytes96',
}
AttestationData
{
# Slot number
'slot': 'uint64',
# Shard number
'shard': 'uint64',
# Root of the signed beacon block
'beacon_block_root': 'bytes32',
# Root of the ancestor at the epoch boundary
'epoch_boundary_root': 'bytes32',
# Data from the shard since the last attestation
'crosslink_data_root': 'bytes32',
# Last crosslink
'latest_crosslink': Crosslink,
# Last justified epoch in the beacon state
'justified_epoch': 'uint64',
# Hash of the last justified beacon block
'justified_block_root': 'bytes32',
}
AttestationDataAndCustodyBit
{
# Attestation data
'data': AttestationData,
# Custody bit
'custody_bit': 'bool',
}
Deposits
Deposit
{
# Branch in the deposit tree
'branch': ['bytes32'],
# Index in the deposit tree
'index': 'uint64',
# Data
'deposit_data': DepositData,
}
DepositData
{
# Amount in Gwei
'amount': 'uint64',
# Timestamp from deposit contract
'timestamp': 'uint64',
# Deposit input
'deposit_input': DepositInput,
}
DepositInput
{
# BLS pubkey
'pubkey': 'bytes48',
# Withdrawal credentials
'withdrawal_credentials': 'bytes32',
# A BLS signature of this `DepositInput`
'proof_of_possession': 'bytes96',
}
Voluntary exits
VoluntaryExit
{
# Minimum epoch for processing exit
'epoch': 'uint64',
# Index of the exiting validator
'validator_index': 'uint64',
# Validator signature
'signature': 'bytes96',
}
Transfers
Transfer
{
# Sender index
'from': 'uint64',
# Recipient index
'to': 'uint64',
# Amount in Gwei
'amount': 'uint64',
# Fee in Gwei for block proposer
'fee': 'uint64',
# Inclusion slot
'slot': 'uint64',
# Sender withdrawal pubkey
'pubkey': 'bytes48',
# Sender signature
'signature': 'bytes96',
}
Beacon chain blocks
BeaconBlock
{
# Header
'slot': 'uint64',
'parent_root': 'bytes32',
'state_root': 'bytes32',
'randao_reveal': 'bytes96',
'eth1_data': Eth1Data,
# Body
'body': BeaconBlockBody,
# Signature
'signature': 'bytes96',
}
BeaconBlockBody
{
'proposer_slashings': [ProposerSlashing],
'attester_slashings': [AttesterSlashing],
'attestations': [Attestation],
'deposits': [Deposit],
'voluntary_exits': [VoluntaryExit],
'transfers': [Transfer],
}
Proposal
{
# Slot number
'slot': 'uint64',
# Shard number (`BEACON_CHAIN_SHARD_NUMBER` for beacon chain)
'shard': 'uint64',
# Block root
'block_root': 'bytes32',
# Signature
'signature': 'bytes96',
}
Beacon chain state
BeaconState
{
# Misc
'slot': 'uint64',
'genesis_time': 'uint64',
'fork': Fork, # For versioning hard forks
# Validator registry
'validator_registry': [Validator],
'validator_balances': ['uint64'],
'validator_registry_update_epoch': 'uint64',
# Randomness and committees
'latest_randao_mixes': ['bytes32'],
'previous_shuffling_start_shard': 'uint64',
'current_shuffling_start_shard': 'uint64',
'previous_shuffling_epoch': 'uint64',
'current_shuffling_epoch': 'uint64',
'previous_shuffling_seed': 'bytes32',
'current_shuffling_seed': 'bytes32',
# Finality
'previous_justified_epoch': 'uint64',
'justified_epoch': 'uint64',
'justification_bitfield': 'uint64',
'finalized_epoch': 'uint64',
# Recent state
'latest_crosslinks': [Crosslink],
'latest_block_roots': ['bytes32'],
'latest_active_index_roots': ['bytes32'],
'latest_slashed_balances': ['uint64'], # Balances slashed at every withdrawal period
'latest_attestations': [PendingAttestation],
'batched_block_roots': ['bytes32'],
# Ethereum 1.0 chain data
'latest_eth1_data': Eth1Data,
'eth1_data_votes': [Eth1DataVote],
'deposit_index': 'uint64'
}
Validator
{
# BLS public key
'pubkey': 'bytes48',
# Withdrawal credentials
'withdrawal_credentials': 'bytes32',
# Epoch when validator activated
'activation_epoch': 'uint64',
# Epoch when validator exited
'exit_epoch': 'uint64',
# Epoch when validator is eligible to withdraw
'withdrawable_epoch': 'uint64',
# Did the validator initiate an exit
'initiated_exit': 'bool',
# Was the validator slashed
'slashed': 'bool',
}
Crosslink
{
# Epoch number
'epoch': 'uint64',
# Shard data since the previous crosslink
'crosslink_data_root': 'bytes32',
}
PendingAttestation
{
# Attester aggregation bitfield
'aggregation_bitfield': 'bytes',
# Attestation data
'data': AttestationData,
# Custody bitfield
'custody_bitfield': 'bytes',
# Inclusion slot
'inclusion_slot': 'uint64',
}
Fork
{
# Previous fork version
'previous_version': 'uint64',
# Current fork version
'current_version': 'uint64',
# Fork epoch number
'epoch': 'uint64',
}
Eth1Data
{
# Root of the deposit tree
'deposit_root': 'bytes32',
# Block hash
'block_hash': 'bytes32',
}
Eth1DataVote
{
# Data being voted for
'eth1_data': Eth1Data,
# Vote count
'vote_count': 'uint64',
}
Custom Types
We define the following Python custom types for type hinting and readability:
Name | SSZ equivalent | Description |
---|---|---|
Slot |
uint64 |
a slot number |
Epoch |
uint64 |
an epoch number |
Shard |
uint64 |
a shard number |
ValidatorIndex |
uint64 |
a validator registry index |
Gwei |
uint64 |
an amount in Gwei |
Bytes32 |
bytes32 |
32 bytes of binary data |
BLSPubkey |
bytes48 |
a BLS12-381 public key |
BLSSignature |
bytes96 |
a BLS12-381 signature |
Helper functions
Note: The definitions below are for specification purposes and are not necessarily optimal implementations.
hash
The hash function is denoted by hash
. In Phase 0 the beacon chain is deployed with the same hash function as Ethereum 1.0, i.e. Keccak-256 (also incorrectly known as SHA3).
Note: We aim to migrate to a S[T/N]ARK-friendly hash function in a future Ethereum 2.0 deployment phase.
hash_tree_root
def hash_tree_root(object: SSZSerializable) -> Bytes32
is a function for hashing objects into a single root utilizing a hash tree structure. hash_tree_root
is defined in the SimpleSerialize spec.
signed_root
def signed_root(object: SSZContainer) -> Bytes32
is a function defined in the SimpleSerialize spec to compute signed messages.
slot_to_epoch
def slot_to_epoch(slot: Slot) -> Epoch:
"""
Return the epoch number of the given ``slot``.
"""
return slot // SLOTS_PER_EPOCH
get_previous_epoch
def get_previous_epoch(state: BeaconState) -> Epoch:
"""`
Return the previous epoch of the given ``state``.
"""
return max(get_current_epoch(state) - 1, GENESIS_EPOCH)
get_current_epoch
def get_current_epoch(state: BeaconState) -> Epoch:
"""
Return the current epoch of the given ``state``.
"""
return slot_to_epoch(state.slot)
get_epoch_start_slot
def get_epoch_start_slot(epoch: Epoch) -> Slot:
"""
Return the starting slot of the given ``epoch``.
"""
return epoch * SLOTS_PER_EPOCH
is_active_validator
def is_active_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is active.
"""
return validator.activation_epoch <= epoch < validator.exit_epoch
get_active_validator_indices
def get_active_validator_indices(validators: List[Validator], epoch: Epoch) -> List[ValidatorIndex]:
"""
Get indices of active validators from ``validators``.
"""
return [i for i, v in enumerate(validators) if is_active_validator(v, epoch)]
get_permuted_index
def get_permuted_index(index: int, list_size: int, seed: Bytes32) -> int:
"""
Return `p(index)` in a pseudorandom permutation `p` of `0...list_size-1` with ``seed`` as entropy.
Utilizes 'swap or not' shuffling found in
https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
See the 'generalized domain' algorithm on page 3.
"""
assert index < list_size
assert list_size <= 2**40
for round in range(SHUFFLE_ROUND_COUNT):
pivot = bytes_to_int(hash(seed + int_to_bytes1(round))[0:8]) % list_size
flip = (pivot - index) % list_size
position = max(index, flip)
source = hash(seed + int_to_bytes1(round) + int_to_bytes4(position // 256))
byte = source[(position % 256) // 8]
bit = (byte >> (position % 8)) % 2
index = flip if bit else index
return index
split
def split(values: List[Any], split_count: int) -> List[List[Any]]:
"""
Splits ``values`` into ``split_count`` pieces.
"""
list_length = len(values)
return [
values[(list_length * i // split_count): (list_length * (i + 1) // split_count)]
for i in range(split_count)
]
get_epoch_committee_count
def get_epoch_committee_count(active_validator_count: int) -> int:
"""
Return the number of committees in one epoch.
"""
return max(
1,
min(
SHARD_COUNT // SLOTS_PER_EPOCH,
active_validator_count // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE,
)
) * SLOTS_PER_EPOCH
get_shuffling
def get_shuffling(seed: Bytes32,
validators: List[Validator],
epoch: Epoch) -> List[List[ValidatorIndex]]
"""
Shuffle active validators and split into crosslink committees.
Return a list of committees (each a list of validator indices).
"""
# Shuffle active validator indices
active_validator_indices = get_active_validator_indices(validators, epoch)
length = len(active_validator_indices)
shuffled_indices = [active_validator_indices[get_permuted_index(i, length, seed)] for i in range(length)]
# Split the shuffled active validator indices
return split(shuffled_indices, get_epoch_committee_count(length))
Invariant: if get_shuffling(seed, validators, epoch)
returns some value x
for some epoch <= get_current_epoch(state) + ACTIVATION_EXIT_DELAY
, it should return the same value x
for the same seed
and epoch
and possible future modifications of validators
forever in phase 0, and until the ~1 year deletion delay in phase 2 and in the future.
Note: this definition and the next few definitions make heavy use of repetitive computing. Production implementations are expected to appropriately use caching/memoization to avoid redoing work.
get_previous_epoch_committee_count
def get_previous_epoch_committee_count(state: BeaconState) -> int:
"""
Return the number of committees in the previous epoch of the given ``state``.
"""
previous_active_validators = get_active_validator_indices(
state.validator_registry,
state.previous_shuffling_epoch,
)
return get_epoch_committee_count(len(previous_active_validators))
get_current_epoch_committee_count
def get_current_epoch_committee_count(state: BeaconState) -> int:
"""
Return the number of committees in the current epoch of the given ``state``.
"""
current_active_validators = get_active_validator_indices(
state.validator_registry,
state.current_shuffling_epoch,
)
return get_epoch_committee_count(len(current_active_validators))
get_next_epoch_committee_count
def get_next_epoch_committee_count(state: BeaconState) -> int:
"""
Return the number of committees in the next epoch of the given ``state``.
"""
next_active_validators = get_active_validator_indices(
state.validator_registry,
get_current_epoch(state) + 1,
)
return get_epoch_committee_count(len(next_active_validators))
get_crosslink_committees_at_slot
def get_crosslink_committees_at_slot(state: BeaconState,
slot: Slot,
registry_change: bool=False) -> List[Tuple[List[ValidatorIndex], Shard]]:
"""
Return the list of ``(committee, shard)`` tuples for the ``slot``.
Note: There are two possible shufflings for crosslink committees for a
``slot`` in the next epoch -- with and without a `registry_change`
"""
epoch = slot_to_epoch(slot)
current_epoch = get_current_epoch(state)
previous_epoch = get_previous_epoch(state)
next_epoch = current_epoch + 1
assert previous_epoch <= epoch <= next_epoch
if epoch == current_epoch:
committees_per_epoch = get_current_epoch_committee_count(state)
seed = state.current_shuffling_seed
shuffling_epoch = state.current_shuffling_epoch
shuffling_start_shard = state.current_shuffling_start_shard
elif epoch == previous_epoch:
committees_per_epoch = get_previous_epoch_committee_count(state)
seed = state.previous_shuffling_seed
shuffling_epoch = state.previous_shuffling_epoch
shuffling_start_shard = state.previous_shuffling_start_shard
elif epoch == next_epoch:
current_committees_per_epoch = get_current_epoch_committee_count(state)
committees_per_epoch = get_next_epoch_committee_count(state)
shuffling_epoch = next_epoch
epochs_since_last_registry_update = current_epoch - state.validator_registry_update_epoch
if registry_change:
seed = generate_seed(state, next_epoch)
shuffling_start_shard = (state.current_shuffling_start_shard + current_committees_per_epoch) % SHARD_COUNT
elif epochs_since_last_registry_update > 1 and is_power_of_two(epochs_since_last_registry_update):
seed = generate_seed(state, next_epoch)
shuffling_start_shard = state.current_shuffling_start_shard
else:
seed = state.current_shuffling_seed
shuffling_start_shard = state.current_shuffling_start_shard
shuffling = get_shuffling(
seed,
state.validator_registry,
shuffling_epoch,
)
offset = slot % SLOTS_PER_EPOCH
committees_per_slot = committees_per_epoch // SLOTS_PER_EPOCH
slot_start_shard = (shuffling_start_shard + committees_per_slot * offset) % SHARD_COUNT
return [
(
shuffling[committees_per_slot * offset + i],
(slot_start_shard + i) % SHARD_COUNT,
)
for i in range(committees_per_slot)
]
get_block_root
def get_block_root(state: BeaconState,
slot: Slot) -> Bytes32:
"""
Return the block root at a recent ``slot``.
"""
assert state.slot <= slot + LATEST_BLOCK_ROOTS_LENGTH
assert slot < state.slot
return state.latest_block_roots[slot % LATEST_BLOCK_ROOTS_LENGTH]
get_block_root(_, s)
should always return hash_tree_root
of the block in the beacon chain at slot s
, and get_crosslink_committees_at_slot(_, s)
should not change unless the validator registry changes.
get_randao_mix
def get_randao_mix(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the randao mix at a recent ``epoch``.
"""
assert get_current_epoch(state) - LATEST_RANDAO_MIXES_LENGTH < epoch <= get_current_epoch(state)
return state.latest_randao_mixes[epoch % LATEST_RANDAO_MIXES_LENGTH]
get_active_index_root
def get_active_index_root(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the index root at a recent ``epoch``.
"""
assert get_current_epoch(state) - LATEST_ACTIVE_INDEX_ROOTS_LENGTH + ACTIVATION_EXIT_DELAY < epoch <= get_current_epoch(state) + ACTIVATION_EXIT_DELAY
return state.latest_active_index_roots[epoch % LATEST_ACTIVE_INDEX_ROOTS_LENGTH]
generate_seed
def generate_seed(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Generate a seed for the given ``epoch``.
"""
return hash(
get_randao_mix(state, epoch - MIN_SEED_LOOKAHEAD) +
get_active_index_root(state, epoch) +
int_to_bytes32(epoch)
)
get_beacon_proposer_index
def get_beacon_proposer_index(state: BeaconState,
slot: Slot) -> ValidatorIndex:
"""
Return the beacon proposer index for the ``slot``.
"""
first_committee, _ = get_crosslink_committees_at_slot(state, slot)[0]
return first_committee[slot % len(first_committee)]
merkle_root
def merkle_root(values: List[Bytes32]) -> Bytes32:
"""
Merkleize ``values`` (where ``len(values)`` is a power of two) and return the Merkle root.
Note that the leaves are not hashed.
"""
o = [0] * len(values) + values
for i in range(len(values) - 1, 0, -1):
o[i] = hash(o[i * 2] + o[i * 2 + 1])
return o[1]
get_attestation_participants
def get_attestation_participants(state: BeaconState,
attestation_data: AttestationData,
bitfield: bytes) -> List[ValidatorIndex]:
"""
Return the participant indices at for the ``attestation_data`` and ``bitfield``.
"""
# Find the committee in the list with the desired shard
crosslink_committees = get_crosslink_committees_at_slot(state, attestation_data.slot)
assert attestation_data.shard in [shard for _, shard in crosslink_committees]
crosslink_committee = [committee for committee, shard in crosslink_committees if shard == attestation_data.shard][0]
assert verify_bitfield(bitfield, len(crosslink_committee))
# Find the participating attesters in the committee
participants = []
for i, validator_index in enumerate(crosslink_committee):
aggregation_bit = get_bitfield_bit(bitfield, i)
if aggregation_bit == 0b1:
participants.append(validator_index)
return participants
is_power_of_two
def is_power_of_two(value: int) -> bool:
"""
Check if ``value`` is a power of two integer.
"""
return (value > 0) and (value & (value - 1) == 0)
int_to_bytes1
, int_to_bytes2
, ...
int_to_bytes1(x): return x.to_bytes(1, 'little')
, int_to_bytes2(x): return x.to_bytes(2, 'little')
, and so on for all integers, particularly 1, 2, 3, 4, 8, 32, 48, 96.
bytes_to_int
def bytes_to_int(data: bytes) -> int:
return int.from_bytes(data, 'little')
get_effective_balance
def get_effective_balance(state: State, index: ValidatorIndex) -> Gwei:
"""
Return the effective balance (also known as "balance at stake") for a validator with the given ``index``.
"""
return min(state.validator_balances[index], MAX_DEPOSIT_AMOUNT)
get_total_balance
def get_total_balance(state: BeaconState, validators: List[ValidatorIndex]) -> Gwei:
"""
Return the combined effective balance of an array of validators.
"""
return sum([get_effective_balance(state, i) for i in validators])
get_fork_version
def get_fork_version(fork: Fork,
epoch: Epoch) -> int:
"""
Return the fork version of the given ``epoch``.
"""
if epoch < fork.epoch:
return fork.previous_version
else:
return fork.current_version
get_domain
def get_domain(fork: Fork,
epoch: Epoch,
domain_type: int) -> int:
"""
Get the domain number that represents the fork meta and signature domain.
"""
fork_version = get_fork_version(fork, epoch)
return fork_version * 2**32 + domain_type
get_bitfield_bit
def get_bitfield_bit(bitfield: bytes, i: int) -> int:
"""
Extract the bit in ``bitfield`` at position ``i``.
"""
return (bitfield[i // 8] >> (i % 8)) % 2
verify_bitfield
def verify_bitfield(bitfield: bytes, committee_size: int) -> bool:
"""
Verify ``bitfield`` against the ``committee_size``.
"""
if len(bitfield) != (committee_size + 7) // 8:
return False
# Check `bitfield` is padded with zero bits only
for i in range(committee_size, len(bitfield) * 8):
if get_bitfield_bit(bitfield, i) == 0b1:
return False
return True
verify_slashable_attestation
def verify_slashable_attestation(state: BeaconState, slashable_attestation: SlashableAttestation) -> bool:
"""
Verify validity of ``slashable_attestation`` fields.
"""
if slashable_attestation.custody_bitfield != b'\x00' * len(slashable_attestation.custody_bitfield): # [TO BE REMOVED IN PHASE 1]
return False
if len(slashable_attestation.validator_indices) == 0:
return False
for i in range(len(slashable_attestation.validator_indices) - 1):
if slashable_attestation.validator_indices[i] >= slashable_attestation.validator_indices[i + 1]:
return False
if not verify_bitfield(slashable_attestation.custody_bitfield, len(slashable_attestation.validator_indices)):
return False
if len(slashable_attestation.validator_indices) > MAX_INDICES_PER_SLASHABLE_VOTE:
return False
custody_bit_0_indices = []
custody_bit_1_indices = []
for i, validator_index in enumerate(slashable_attestation.validator_indices):
if get_bitfield_bit(slashable_attestation.custody_bitfield, i) == 0b0:
custody_bit_0_indices.append(validator_index)
else:
custody_bit_1_indices.append(validator_index)
return bls_verify_multiple(
pubkeys=[
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in custody_bit_0_indices]),
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in custody_bit_1_indices]),
],
message_hashes=[
hash_tree_root(AttestationDataAndCustodyBit(data=slashable_attestation.data, custody_bit=0b0)),
hash_tree_root(AttestationDataAndCustodyBit(data=slashable_attestation.data, custody_bit=0b1)),
],
signature=slashable_attestation.aggregate_signature,
domain=get_domain(state.fork, slot_to_epoch(slashable_attestation.data.slot), DOMAIN_ATTESTATION),
)
is_double_vote
def is_double_vote(attestation_data_1: AttestationData,
attestation_data_2: AttestationData) -> bool:
"""
Check if ``attestation_data_1`` and ``attestation_data_2`` have the same target.
"""
target_epoch_1 = slot_to_epoch(attestation_data_1.slot)
target_epoch_2 = slot_to_epoch(attestation_data_2.slot)
return target_epoch_1 == target_epoch_2
is_surround_vote
def is_surround_vote(attestation_data_1: AttestationData,
attestation_data_2: AttestationData) -> bool:
"""
Check if ``attestation_data_1`` surrounds ``attestation_data_2``.
"""
source_epoch_1 = attestation_data_1.justified_epoch
source_epoch_2 = attestation_data_2.justified_epoch
target_epoch_1 = slot_to_epoch(attestation_data_1.slot)
target_epoch_2 = slot_to_epoch(attestation_data_2.slot)
return source_epoch_1 < source_epoch_2 and target_epoch_2 < target_epoch_1
integer_squareroot
def integer_squareroot(n: int) -> int:
"""
The largest integer ``x`` such that ``x**2`` is less than or equal to ``n``.
"""
assert n >= 0
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
get_delayed_activation_exit_epoch
def get_delayed_activation_exit_epoch(epoch: Epoch) -> Epoch:
"""
Return the epoch at which an activation or exit triggered in ``epoch`` takes effect.
"""
return epoch + 1 + ACTIVATION_EXIT_DELAY
bls_verify
bls_verify
is a function for verifying a BLS signature, defined in the BLS Signature spec.
bls_verify_multiple
bls_verify_multiple
is a function for verifying a BLS signature constructed from multiple messages, defined in the BLS Signature spec.
bls_aggregate_pubkeys
bls_aggregate_pubkeys
is a function for aggregating multiple BLS public keys into a single aggregate key, defined in the BLS Signature spec.
process_deposit
Used to add a validator or top up an existing validator's balance by some deposit
amount:
def process_deposit(state: BeaconState, deposit: Deposit) -> None:
"""
Process a deposit from Ethereum 1.0.
Note that this function mutates ``state``.
"""
deposit_input = deposit.deposit_data.deposit_input
proof_is_valid = bls_verify(
pubkey=deposit_input.pubkey,
message_hash=signed_root(deposit_input, "proof_of_possession"),
signature=deposit_input.proof_of_possession,
domain=get_domain(
state.fork,
get_current_epoch(state),
DOMAIN_DEPOSIT,
)
)
if not proof_is_valid:
return
validator_pubkeys = [v.pubkey for v in state.validator_registry]
pubkey = deposit_input.pubkey
amount = deposit.deposit_data.amount
withdrawal_credentials = deposit_input.withdrawal_credentials
if pubkey not in validator_pubkeys:
# Add new validator
validator = Validator(
pubkey=pubkey,
withdrawal_credentials=withdrawal_credentials,
activation_epoch=FAR_FUTURE_EPOCH,
exit_epoch=FAR_FUTURE_EPOCH,
withdrawable_epoch=FAR_FUTURE_EPOCH,
initiated_exit=False,
slashed=False,
)
# Note: In phase 2 registry indices that have been withdrawn for a long time will be recycled.
state.validator_registry.append(validator)
state.validator_balances.append(amount)
else:
# Increase balance by deposit amount
index = validator_pubkeys.index(pubkey)
assert state.validator_registry[index].withdrawal_credentials == withdrawal_credentials
state.validator_balances[index] += amount
Routines for updating validator status
Note: All functions in this section mutate state
.
activate_validator
def activate_validator(state: BeaconState, index: ValidatorIndex, is_genesis: bool) -> None:
"""
Activate the validator of the given ``index``.
Note that this function mutates ``state``.
"""
validator = state.validator_registry[index]
validator.activation_epoch = GENESIS_EPOCH if is_genesis else get_delayed_activation_exit_epoch(get_current_epoch(state))
initiate_validator_exit
def initiate_validator_exit(state: BeaconState, index: ValidatorIndex) -> None:
"""
Initiate the validator of the given ``index``.
Note that this function mutates ``state``.
"""
validator = state.validator_registry[index]
validator.initiated_exit = True
exit_validator
def exit_validator(state: BeaconState, index: ValidatorIndex) -> None:
"""
Exit the validator of the given ``index``.
Note that this function mutates ``state``.
"""
validator = state.validator_registry[index]
# The following updates only occur if not previous exited
if validator.exit_epoch <= get_delayed_activation_exit_epoch(get_current_epoch(state)):
return
validator.exit_epoch = get_delayed_activation_exit_epoch(get_current_epoch(state))
slash_validator
def slash_validator(state: BeaconState, index: ValidatorIndex) -> None:
"""
Slash the validator with index ``index``.
Note that this function mutates ``state``.
"""
validator = state.validator_registry[index]
assert state.slot < get_epoch_start_slot(validator.withdrawable_epoch) # [TO BE REMOVED IN PHASE 2]
exit_validator(state, index)
state.latest_slashed_balances[get_current_epoch(state) % LATEST_SLASHED_EXIT_LENGTH] += get_effective_balance(state, index)
whistleblower_index = get_beacon_proposer_index(state, state.slot)
whistleblower_reward = get_effective_balance(state, index) // WHISTLEBLOWER_REWARD_QUOTIENT
state.validator_balances[whistleblower_index] += whistleblower_reward
state.validator_balances[index] -= whistleblower_reward
validator.slashed = True
validator.withdrawable_epoch = get_current_epoch(state) + LATEST_SLASHED_EXIT_LENGTH
prepare_validator_for_withdrawal
def prepare_validator_for_withdrawal(state: BeaconState, index: ValidatorIndex) -> None:
"""
Set the validator with the given ``index`` as withdrawable
``MIN_VALIDATOR_WITHDRAWABILITY_DELAY`` after the current epoch.
Note that this function mutates ``state``.
"""
validator = state.validator_registry[index]
validator.withdrawable_epoch = get_current_epoch(state) + MIN_VALIDATOR_WITHDRAWABILITY_DELAY
Ethereum 1.0 deposit contract
The initial deployment phases of Ethereum 2.0 are implemented without consensus changes to Ethereum 1.0. A deposit contract at address DEPOSIT_CONTRACT_ADDRESS
is added to Ethereum 1.0 for deposits of ETH to the beacon chain. Validator balances will be withdrawable to the shards in phase 2, i.e. when the EVM2.0 is deployed and the shards have state.
Deposit arguments
The deposit contract has a single deposit
function which takes as argument a SimpleSerialize'd DepositInput
.
Withdrawal credentials
One of the DepositInput
fields is withdrawal_credentials
. It is a commitment to credentials for withdrawals to shards. The first byte of withdrawal_credentials
is a version number. As of now the only expected format is as follows:
withdrawal_credentials[:1] == BLS_WITHDRAWAL_PREFIX_BYTE
withdrawal_credentials[1:] == hash(withdrawal_pubkey)[1:]
wherewithdrawal_pubkey
is a BLS pubkey
The private key corresponding to withdrawal_pubkey
will be required to initiate a withdrawal. It can be stored separately until a withdrawal is required, e.g. in cold storage.
Deposit
logs
Every Ethereum 1.0 deposit, of size between MIN_DEPOSIT_AMOUNT
and MAX_DEPOSIT_AMOUNT
, emits a Deposit
log for consumption by the beacon chain. The deposit contract does little validation, pushing most of the validator onboarding logic to the beacon chain. In particular, the proof of possession (a BLS12 signature) is not verified by the deposit contract.
Eth2Genesis
log
When sufficiently many full deposits have been made the deposit contract emits the Eth2Genesis
log. The beacon chain state may then be initialized by calling the get_genesis_beacon_state
function (defined below) where:
genesis_time
equalstime
in theEth2Genesis
loglatest_eth1_data.deposit_root
equalsdeposit_root
in theEth2Genesis
loglatest_eth1_data.block_hash
equals the hash of the block that included the loggenesis_validator_deposits
is a list ofDeposit
objects built according to theDeposit
logs up to the deposit that triggered theEth2Genesis
log, processed in the order in which they were emitted (oldest to newest)
Vyper code
The source for the Vyper contract lives in a separate repository at https://github.com/ethereum/deposit_contract/blob/master/deposit_contract/contracts/validator_registration.v.py.
Note: to save ~10x on gas this contract uses a somewhat unintuitive progressive Merkle root calculation algo that requires only O(log(n)) storage. See https://github.com/ethereum/research/blob/master/beacon_chain_impl/progressive_merkle_tree.py for an implementation of the same algo in python tested for correctness.
For convenience, we provide the interface to the contract here:
__init__()
: initializes the contractget_deposit_root() -> bytes32
: returns the current root of the deposit treedeposit(bytes[512])
: adds a deposit instance to the deposit tree, incorporating the input argument and the value transferred in the given call. Note: the amount of value transferred must be withinMIN_DEPOSIT_AMOUNT
andMAX_DEPOSIT_AMOUNT
, inclusive. Each of these constants are specified in units of Gwei.
On genesis
A valid block with slot GENESIS_SLOT
(a "genesis block") has the following values. Other validity rules (e.g. requiring a signature) do not apply.
{
slot=GENESIS_SLOT,
parent_root=ZERO_HASH,
state_root=GENESIS_STATE_ROOT,
randao_reveal=EMPTY_SIGNATURE,
eth1_data=Eth1Data(
deposit_root=ZERO_HASH,
block_hash=ZERO_HASH
),
signature=EMPTY_SIGNATURE,
body=BeaconBlockBody(
proposer_slashings=[],
attester_slashings=[],
attestations=[],
deposits=[],
exits=[],
),
}
GENESIS_STATE_ROOT
(in the above "genesis block") is generated from the get_genesis_beacon_state
function below. When enough full deposits have been made to the deposit contract and the Eth2Genesis
log has been emitted, get_genesis_beacon_state
will execute to compute the hash_tree_root
of BeaconState
.
def get_genesis_beacon_state(genesis_validator_deposits: List[Deposit],
genesis_time: int,
latest_eth1_data: Eth1Data) -> BeaconState:
"""
Get the genesis ``BeaconState``.
"""
state = BeaconState(
# Misc
slot=GENESIS_SLOT,
genesis_time=genesis_time,
fork=Fork(
previous_version=GENESIS_FORK_VERSION,
current_version=GENESIS_FORK_VERSION,
epoch=GENESIS_EPOCH,
),
# Validator registry
validator_registry=[],
validator_balances=[],
validator_registry_update_epoch=GENESIS_EPOCH,
# Randomness and committees
latest_randao_mixes=[EMPTY_SIGNATURE for _ in range(LATEST_RANDAO_MIXES_LENGTH)],
previous_shuffling_start_shard=GENESIS_START_SHARD,
current_shuffling_start_shard=GENESIS_START_SHARD,
previous_shuffling_epoch=GENESIS_EPOCH,
current_shuffling_epoch=GENESIS_EPOCH,
previous_shuffling_seed=ZERO_HASH,
current_shuffling_seed=ZERO_HASH,
# Finality
previous_justified_epoch=GENESIS_EPOCH,
justified_epoch=GENESIS_EPOCH,
justification_bitfield=0,
finalized_epoch=GENESIS_EPOCH,
# Recent state
latest_crosslinks=[Crosslink(epoch=GENESIS_EPOCH, crosslink_data_root=ZERO_HASH) for _ in range(SHARD_COUNT)],
latest_block_roots=[ZERO_HASH for _ in range(LATEST_BLOCK_ROOTS_LENGTH)],
latest_active_index_roots=[ZERO_HASH for _ in range(LATEST_ACTIVE_INDEX_ROOTS_LENGTH)],
latest_slashed_balances=[0 for _ in range(LATEST_SLASHED_EXIT_LENGTH)],
latest_attestations=[],
batched_block_roots=[],
# Ethereum 1.0 chain data
latest_eth1_data=latest_eth1_data,
eth1_data_votes=[],
deposit_index=len(genesis_validator_deposits)
)
# Process genesis deposits
for deposit in genesis_validator_deposits:
process_deposit(state, deposit)
# Process genesis activations
for validator_index, _ in enumerate(state.validator_registry):
if get_effective_balance(state, validator_index) >= MAX_DEPOSIT_AMOUNT:
activate_validator(state, validator_index, is_genesis=True)
genesis_active_index_root = hash_tree_root(get_active_validator_indices(state.validator_registry, GENESIS_EPOCH))
for index in range(LATEST_ACTIVE_INDEX_ROOTS_LENGTH):
state.latest_active_index_roots[index] = genesis_active_index_root
state.current_shuffling_seed = generate_seed(state, GENESIS_EPOCH)
return state
Beacon chain processing
The beacon chain is the system chain for Ethereum 2.0. The main responsibilities of the beacon chain are:
- Store and maintain the registry of validators
- Process crosslinks (see above)
- Process its per-block consensus, as well as the finality gadget
Processing the beacon chain is similar to processing the Ethereum 1.0 chain. Clients download and process blocks, and maintain a view of what is the current "canonical chain", terminating at the current "head". However, because of the beacon chain's relationship with Ethereum 1.0, and because it is a proof-of-stake chain, there are differences.
For a beacon chain block, block
, to be processed by a node, the following conditions must be met:
- The parent block with root
block.parent_root
has been processed and accepted. - An Ethereum 1.0 block pointed to by the
state.latest_eth1_data.block_hash
has been processed and accepted. - The node's Unix time is greater than or equal to
state.genesis_time + (block.slot - GENESIS_SLOT) * SECONDS_PER_SLOT
. (Note that leap seconds mean that slots will occasionally lastSECONDS_PER_SLOT + 1
orSECONDS_PER_SLOT - 1
seconds, possibly several times a year.)
If these conditions are not met, the client should delay processing the beacon block until the conditions are all satisfied.
Beacon block production is significantly different because of the proof of stake mechanism. A client simply checks what it thinks is the canonical chain when it should create a block, and looks up what its slot number is; when the slot arrives, it either proposes or attests to a block as required. Note that this requires each node to have a clock that is roughly (i.e. within SECONDS_PER_SLOT
seconds) synchronized with the other nodes.
Beacon chain fork choice rule
The beacon chain fork choice rule is a hybrid that combines justification and finality with Latest Message Driven (LMD) Greediest Heaviest Observed SubTree (GHOST). At any point in time a validator v
subjectively calculates the beacon chain head as follows.
- Abstractly define
Store
as the type of storage object for the chain data andstore
be the set of attestations and blocks that the validatorv
has observed and verified (in particular, block ancestors must be recursively verified). Attestations not yet included in any chain are still included instore
. - Let
finalized_head
be the finalized block with the highest epoch. (A blockB
is finalized if there is a descendant ofB
instore
the processing of which setsB
as finalized.) - Let
justified_head
be the descendant offinalized_head
with the highest epoch that has been justified for at least 1 epoch. (A blockB
is justified if there is a descendant ofB
instore
the processing of which setsB
as justified.) If no such descendant exists setjustified_head
tofinalized_head
. - Let
get_ancestor(store: Store, block: BeaconBlock, slot: Slot) -> BeaconBlock
be the ancestor ofblock
with slot numberslot
. Theget_ancestor
function can be defined recursively as:
def get_ancestor(store: Store, block: BeaconBlock, slot: Slot) -> BeaconBlock:
"""
Get the ancestor of ``block`` with slot number ``slot``; return ``None`` if not found.
"""
if block.slot == slot:
return block
elif block.slot < slot:
return None
else:
return get_ancestor(store, store.get_parent(block), slot)
- Let
get_latest_attestation(store: Store, validator_index: ValidatorIndex) -> Attestation
be the attestation with the highest slot number instore
from the validator with the givenvalidator_index
. If several such attestations exist, use the one the validatorv
observed first. - Let
get_latest_attestation_target(store: Store, validator_index: ValidatorIndex) -> BeaconBlock
be the target block in the attestationget_latest_attestation(store, validator_index)
. - Let
get_children(store: Store, block: BeaconBlock) -> List[BeaconBlock]
returns the child blocks of the givenblock
. - Let
justified_head_state
be the resultingBeaconState
object from processing the chain up to thejustified_head
. - The
head
islmd_ghost(store, justified_head_state, justified_head)
where the functionlmd_ghost
is defined below. Note that the implementation below is suboptimal; there are implementations that compute the head in time logarithmic in slot count.
def lmd_ghost(store: Store, start_state: BeaconState, start_block: BeaconBlock) -> BeaconBlock:
"""
Execute the LMD-GHOST algorithm to find the head ``BeaconBlock``.
"""
validators = start_state.validator_registry
active_validator_indices = get_active_validator_indices(validators, slot_to_epoch(start_state.slot))
attestation_targets = [
(validator_index, get_latest_attestation_target(store, validator_index))
for validator_index in active_validator_indices
]
def get_vote_count(block: BeaconBlock) -> int:
return sum(
get_effective_balance(start_state.validator_balances[validator_index]) // FORK_CHOICE_BALANCE_INCREMENT
for validator_index, target in attestation_targets
if get_ancestor(store, target, block.slot) == block
)
head = start_block
while 1:
children = get_children(store, head)
if len(children) == 0:
return head
head = max(children, key=get_vote_count)
Beacon chain state transition function
We now define the state transition function. At a high level the state transition is made up of three parts:
- The per-slot transitions, which happens at the start of every slot.
- The per-block transitions, which happens at every block.
- The per-epoch transitions, which happens at the end of the last slot of every epoch (i.e.
(state.slot + 1) % SLOTS_PER_EPOCH == 0
).
The per-slot transitions focus on the slot counter and block roots records updates; the per-block transitions generally focus on verifying aggregate signatures and saving temporary records relating to the per-block activity in the BeaconState
; the per-epoch transitions focus on the validator registry, including adjusting balances and activating and exiting validators, as well as processing crosslinks and managing block justification/finalization.
Beacon blocks that trigger unhandled Python exceptions (e.g. out-of-range list accesses) and failed assert
s during the state transition are considered invalid.
Note: If there are skipped slots between a block and its parent block, run the steps in the per-slot and per-epoch sections once for each skipped slot and then once for the slot containing the new block.
Per-slot processing
Below are the processing steps that happen at every slot.
Slot
- Set
state.slot += 1
.
Block roots
- Let
previous_block_root
be thehash_tree_root
of the previous beacon block processed in the chain. - Set
state.latest_block_roots[(state.slot - 1) % LATEST_BLOCK_ROOTS_LENGTH] = previous_block_root
. - If
state.slot % LATEST_BLOCK_ROOTS_LENGTH == 0
appendmerkle_root(state.latest_block_roots)
tostate.batched_block_roots
.
Per-block processing
Below are the processing steps that happen at every block
.
Slot
- Verify that
block.slot == state.slot
.
Block signature
- Let
proposer = state.validator_registry[get_beacon_proposer_index(state, state.slot)]
. - Let
proposal = Proposal(block.slot, BEACON_CHAIN_SHARD_NUMBER, signed_root(block, "signature"), block.signature)
. - Verify that
bls_verify(pubkey=proposer.pubkey, message_hash=signed_root(proposal, "signature"), signature=proposal.signature, domain=get_domain(state.fork, get_current_epoch(state), DOMAIN_PROPOSAL))
.
RANDAO
- Verify that
bls_verify(pubkey=proposer.pubkey, message_hash=hash_tree_root(get_current_epoch(state)), signature=block.randao_reveal, domain=get_domain(state.fork, get_current_epoch(state), DOMAIN_RANDAO))
. - Set
state.latest_randao_mixes[get_current_epoch(state) % LATEST_RANDAO_MIXES_LENGTH] = xor(get_randao_mix(state, get_current_epoch(state)), hash(block.randao_reveal))
.
Eth1 data
- If there exists an
eth1_data_vote
instate.eth1_data_votes
for whicheth1_data_vote.eth1_data == block.eth1_data
(there will be at most one), seteth1_data_vote.vote_count += 1
. - Otherwise, append to
state.eth1_data_votes
a newEth1DataVote(eth1_data=block.eth1_data, vote_count=1)
.
Transactions
Proposer slashings
Verify that len(block.body.proposer_slashings) <= MAX_PROPOSER_SLASHINGS
.
For each proposer_slashing
in block.body.proposer_slashings
:
- Let
proposer = state.validator_registry[proposer_slashing.proposer_index]
. - Verify that
proposer_slashing.proposal_1.slot == proposer_slashing.proposal_2.slot
. - Verify that
proposer_slashing.proposal_1.shard == proposer_slashing.proposal_2.shard
. - Verify that
proposer_slashing.proposal_1.block_root != proposer_slashing.proposal_2.block_root
. - Verify that
proposer.slashed == False
. - Verify that
bls_verify(pubkey=proposer.pubkey, message_hash=signed_root(proposer_slashing.proposal_1, "signature"), signature=proposer_slashing.proposal_1.signature, domain=get_domain(state.fork, slot_to_epoch(proposer_slashing.proposal_1.slot), DOMAIN_PROPOSAL))
. - Verify that
bls_verify(pubkey=proposer.pubkey, message_hash=signed_root(proposer_slashing.proposal_2, "signature"), signature=proposer_slashing.proposal_2.signature, domain=get_domain(state.fork, slot_to_epoch(proposer_slashing.proposal_2.slot), DOMAIN_PROPOSAL))
. - Run
slash_validator(state, proposer_slashing.proposer_index)
.
Attester slashings
Verify that len(block.body.attester_slashings) <= MAX_ATTESTER_SLASHINGS
.
For each attester_slashing
in block.body.attester_slashings
:
- Let
slashable_attestation_1 = attester_slashing.slashable_attestation_1
. - Let
slashable_attestation_2 = attester_slashing.slashable_attestation_2
. - Verify that
slashable_attestation_1.data != slashable_attestation_2.data
. - Verify that
is_double_vote(slashable_attestation_1.data, slashable_attestation_2.data)
oris_surround_vote(slashable_attestation_1.data, slashable_attestation_2.data)
. - Verify that
verify_slashable_attestation(state, slashable_attestation_1)
. - Verify that
verify_slashable_attestation(state, slashable_attestation_2)
. - Let
slashable_indices = [index for index in slashable_attestation_1.validator_indices if index in slashable_attestation_2.validator_indices and state.validator_registry[index].slashed == False]
. - Verify that
len(slashable_indices) >= 1
. - Run
slash_validator(state, index)
for eachindex
inslashable_indices
.
Attestations
Verify that len(block.body.attestations) <= MAX_ATTESTATIONS
.
For each attestation
in block.body.attestations
:
- Verify that
attestation.data.slot >= GENESIS_SLOT
. - Verify that
attestation.data.slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot
. - Verify that `state.slot < attestation.data.slot + SLOTS_PER_EPOCH.
- Verify that
attestation.data.justified_epoch
is equal tostate.justified_epoch if slot_to_epoch(attestation.data.slot + 1) >= get_current_epoch(state) else state.previous_justified_epoch
. - Verify that
attestation.data.justified_block_root
is equal toget_block_root(state, get_epoch_start_slot(attestation.data.justified_epoch))
. - Verify that either (i)
state.latest_crosslinks[attestation.data.shard] == attestation.data.latest_crosslink
or (ii)state.latest_crosslinks[attestation.data.shard] == Crosslink(crosslink_data_root=attestation.data.crosslink_data_root, epoch=slot_to_epoch(attestation.data.slot))
. - Verify bitfields and aggregate signature:
assert attestation.custody_bitfield == b'\x00' * len(attestation.custody_bitfield) # [TO BE REMOVED IN PHASE 1]
assert attestation.aggregation_bitfield != b'\x00' * len(attestation.aggregation_bitfield)
crosslink_committee = [
committee for committee, shard in get_crosslink_committees_at_slot(state, attestation.data.slot)
if shard == attestation.data.shard
][0]
for i in range(len(crosslink_committee)):
if get_bitfield_bit(attestation.aggregation_bitfield, i) == 0b0:
assert get_bitfield_bit(attestation.custody_bitfield, i) == 0b0
participants = get_attestation_participants(state, attestation.data, attestation.aggregation_bitfield)
custody_bit_1_participants = get_attestation_participants(state, attestation.data, attestation.custody_bitfield)
custody_bit_0_participants = [i in participants for i not in custody_bit_1_participants]
assert bls_verify_multiple(
pubkeys=[
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in custody_bit_0_participants]),
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in custody_bit_1_participants]),
],
message_hashes=[
hash_tree_root(AttestationDataAndCustodyBit(data=attestation.data, custody_bit=0b0)),
hash_tree_root(AttestationDataAndCustodyBit(data=attestation.data, custody_bit=0b1)),
],
signature=attestation.aggregate_signature,
domain=get_domain(state.fork, slot_to_epoch(attestation.data.slot), DOMAIN_ATTESTATION),
)
- [TO BE REMOVED IN PHASE 1] Verify that
attestation.data.crosslink_data_root == ZERO_HASH
. - Append
PendingAttestation(data=attestation.data, aggregation_bitfield=attestation.aggregation_bitfield, custody_bitfield=attestation.custody_bitfield, inclusion_slot=state.slot)
tostate.latest_attestations
.
Deposits
Verify that len(block.body.deposits) <= MAX_DEPOSITS
.
[TODO: update the call to verify_merkle_branch
below if it needs to change after we process deposits in order]
For each deposit
in block.body.deposits
:
- Let
serialized_deposit_data
be the serialized form ofdeposit.deposit_data
. It should be 8 bytes fordeposit_data.amount
followed by 8 bytes fordeposit_data.timestamp
and then theDepositInput
bytes. That is, it should matchdeposit_data
in the Ethereum 1.0 deposit contract of which the hash was placed into the Merkle tree. - Verify that
deposit.index == state.deposit_index
. - Verify that
verify_merkle_branch(hash(serialized_deposit_data), deposit.branch, DEPOSIT_CONTRACT_TREE_DEPTH, deposit.index, state.latest_eth1_data.deposit_root)
isTrue
.
def verify_merkle_branch(leaf: Bytes32, branch: List[Bytes32], depth: int, index: int, root: Bytes32) -> bool:
"""
Verify that the given ``leaf`` is on the merkle branch ``branch``.
"""
value = leaf
for i in range(depth):
if index // (2**i) % 2:
value = hash(branch[i] + value)
else:
value = hash(value + branch[i])
return value == root
- Run the following:
process_deposit(state, deposit)
- Set
state.deposit_index += 1
.
Voluntary exits
Verify that len(block.body.voluntary_exits) <= MAX_VOLUNTARY_EXITS
.
For each exit
in block.body.voluntary_exits
:
- Let
validator = state.validator_registry[exit.validator_index]
. - Verify that
validator.exit_epoch > get_delayed_activation_exit_epoch(get_current_epoch(state))
. - Verify that
get_current_epoch(state) >= exit.epoch
. - Verify that
bls_verify(pubkey=validator.pubkey, message_hash=signed_root(exit, "signature"), signature=exit.signature, domain=get_domain(state.fork, exit.epoch, DOMAIN_EXIT))
. - Run
initiate_validator_exit(state, exit.validator_index)
.
Transfers
Note: Transfers are a temporary functionality for phases 0 and 1, to be removed in phase 2.
Verify that len(block.body.transfers) <= MAX_TRANSFERS
and that all transfers are distinct.
For each transfer
in block.body.transfers
:
- Verify that
state.validator_balances[transfer.from] >= transfer.amount
. - Verify that
state.validator_balances[transfer.from] >= transfer.fee
. - Verify that
state.validator_balances[transfer.from] == transfer.amount + transfer.fee
orstate.validator_balances[transfer.from] >= transfer.amount + transfer.fee + MIN_DEPOSIT_AMOUNT
. - Verify that
state.slot == transfer.slot
. - Verify that
get_current_epoch(state) >= state.validator_registry[transfer.from].withdrawable_epoch
orstate.validator_registry[transfer.from].activation_epoch == FAR_FUTURE_EPOCH
. - Verify that
state.validator_registry[transfer.from].withdrawal_credentials == BLS_WITHDRAWAL_PREFIX_BYTE + hash(transfer.pubkey)[1:]
. - Verify that
bls_verify(pubkey=transfer.pubkey, message_hash=signed_root(transfer, "signature"), signature=transfer.signature, domain=get_domain(state.fork, slot_to_epoch(transfer.slot), DOMAIN_TRANSFER))
. - Set
state.validator_balances[transfer.from] -= transfer.amount + transfer.fee
. - Set
state.validator_balances[transfer.to] += transfer.amount
. - Set
state.validator_balances[get_beacon_proposer_index(state, state.slot)] += transfer.fee
.
Per-epoch processing
The steps below happen when (state.slot + 1) % SLOTS_PER_EPOCH == 0
.
Helper variables
- Let
current_epoch = get_current_epoch(state)
. - Let
previous_epoch = get_previous_epoch(state)
. - Let
next_epoch = current_epoch + 1
.
Validators attesting during the current epoch:
- Let
current_total_balance = get_total_balance(state, get_active_validator_indices(state.validator_registry, current_epoch))
. - Let
current_epoch_attestations = [a for a in state.latest_attestations if current_epoch == slot_to_epoch(a.data.slot)]
. (Note: Each of these attestations votes for the current justified epoch/block root because of the attestation block validity rules.) - Validators justifying the epoch boundary block at the start of the current epoch:
- Let
current_epoch_boundary_attestations = [a for a in current_epoch_attestations if a.data.epoch_boundary_root == get_block_root(state, get_epoch_start_slot(current_epoch))]
. - Let
current_epoch_boundary_attester_indices
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.aggregation_bitfield) for a in current_epoch_boundary_attestations]
. - Let
current_epoch_boundary_attesting_balance = get_total_balance(state, current_epoch_boundary_attester_indices)
.
- Let
Validators attesting during the previous epoch:
- Let
previous_total_balance = get_total_balance(state, get_active_validator_indices(state.validator_registry, previous_epoch))
. - Validators that made an attestation during the previous epoch, targeting the previous justified slot:
- Let
previous_epoch_attestations = [a for a in state.latest_attestations if previous_epoch == slot_to_epoch(a.data.slot)]
. (Note: Each of these attestations votes for the previous justified epoch/block root because of the attestation block validity rules.) - Let
previous_epoch_attester_indices
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.aggregation_bitfield) for a in previous_epoch_attestations]
. - Let
previous_epoch_attesting_balance = get_total_balance(state, previous_epoch_attester_indices)
.
- Let
- Validators justifying the epoch boundary block at the start of the previous epoch:
- Let
previous_epoch_boundary_attestations = [a for a in previous_epoch_attestations if a.data.epoch_boundary_root == get_block_root(state, get_epoch_start_slot(previous_epoch))]
. - Let
previous_epoch_boundary_attester_indices
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.aggregation_bitfield) for a in previous_epoch_boundary_attestations]
. - Let
previous_epoch_boundary_attesting_balance = get_total_balance(state, previous_epoch_boundary_attester_indices)
.
- Let
- Validators attesting to the expected beacon chain head during the previous epoch:
- Let
previous_epoch_head_attestations = [a for a in previous_epoch_attestations if a.data.beacon_block_root == get_block_root(state, a.data.slot)]
. - Let
previous_epoch_head_attester_indices
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.aggregation_bitfield) for a in previous_epoch_head_attestations]
. - Let
previous_epoch_head_attesting_balance = get_total_balance(state, previous_epoch_head_attester_indices)
.
- Let
Note: previous_total_balance
and previous_epoch_boundary_attesting_balance
balance might be marginally different than the actual balances during previous epoch transition. Due to the tight bound on validator churn each epoch and small per-epoch rewards/penalties, the potential balance difference is very low and only marginally affects consensus safety.
For every slot in range(get_epoch_start_slot(previous_epoch), get_epoch_start_slot(next_epoch))
, let crosslink_committees_at_slot = get_crosslink_committees_at_slot(state, slot)
. For every (crosslink_committee, shard)
in crosslink_committees_at_slot
, compute:
- Let
crosslink_data_root
bestate.latest_crosslinks[shard].crosslink_data_root
- Let
attesting_validator_indices(crosslink_committee, crosslink_data_root)
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.aggregation_bitfield) for a in current_epoch_attestations + previous_epoch_attestations if a.data.shard == shard and a.data.crosslink_data_root == crosslink_data_root]
. - Let
winning_root(crosslink_committee)
be equal to the value ofcrosslink_data_root
such thatget_total_balance(state, attesting_validator_indices(crosslink_committee, crosslink_data_root))
is maximized (ties broken by favoring lexicographically smallestcrosslink_data_root
). - Let
attesting_validators(crosslink_committee)
be equal toattesting_validator_indices(crosslink_committee, winning_root(crosslink_committee))
for convenience. - Let
total_attesting_balance(crosslink_committee) = get_total_balance(state, attesting_validators(crosslink_committee))
.
Define the following helpers to process attestation inclusion rewards and inclusion distance reward/penalty. For every attestation a
in previous_epoch_attestations
:
- Let
inclusion_slot(state, index) = a.inclusion_slot
for the attestationa
whereindex
is inget_attestation_participants(state, a.data, a.aggregation_bitfield)
. If multiple attestations are applicable, the attestation with lowestinclusion_slot
is considered. - Let
inclusion_distance(state, index) = a.inclusion_slot - a.data.slot
wherea
is the above attestation.
Eth1 data
If next_epoch % EPOCHS_PER_ETH1_VOTING_PERIOD == 0
:
- If
eth1_data_vote.vote_count * 2 > EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH
for someeth1_data_vote
instate.eth1_data_votes
(ie. more than half the votes in this voting period were for that value), setstate.latest_eth1_data = eth1_data_vote.eth1_data
. - Set
state.eth1_data_votes = []
.
Justification
First, update the justification bitfield:
- Let
new_justified_epoch = state.justified_epoch
. - Set
state.justification_bitfield = state.justification_bitfield << 1
. - Set
state.justification_bitfield |= 2
andnew_justified_epoch = previous_epoch
if3 * previous_epoch_boundary_attesting_balance >= 2 * previous_total_balance
. - Set
state.justification_bitfield |= 1
andnew_justified_epoch = current_epoch
if3 * current_epoch_boundary_attesting_balance >= 2 * current_total_balance
.
Next, update last finalized epoch if possible:
- Set
state.finalized_epoch = state.previous_justified_epoch
if(state.justification_bitfield >> 1) % 8 == 0b111 and state.previous_justified_epoch == previous_epoch - 2
. - Set
state.finalized_epoch = state.previous_justified_epoch
if(state.justification_bitfield >> 1) % 4 == 0b11 and state.previous_justified_epoch == previous_epoch - 1
. - Set
state.finalized_epoch = state.justified_epoch
if(state.justification_bitfield >> 0) % 8 == 0b111 and state.justified_epoch == previous_epoch - 1
. - Set
state.finalized_epoch = state.justified_epoch
if(state.justification_bitfield >> 0) % 4 == 0b11 and state.justified_epoch == previous_epoch
.
Finally, update the following:
- Set
state.previous_justified_epoch = state.justified_epoch
. - Set
state.justified_epoch = new_justified_epoch
.
Crosslinks
For every slot in range(get_epoch_start_slot(previous_epoch), get_epoch_start_slot(next_epoch))
, let crosslink_committees_at_slot = get_crosslink_committees_at_slot(state, slot)
. For every (crosslink_committee, shard)
in crosslink_committees_at_slot
, compute:
- Set
state.latest_crosslinks[shard] = Crosslink(epoch=slot_to_epoch(slot), crosslink_data_root=winning_root(crosslink_committee))
if3 * total_attesting_balance(crosslink_committee) >= 2 * get_total_balance(crosslink_committee)
.
Rewards and penalties
First, we define some additional helpers:
- Let
base_reward_quotient = integer_squareroot(previous_total_balance) // BASE_REWARD_QUOTIENT
. - Let
base_reward(state, index) = get_effective_balance(state, index) // base_reward_quotient // 5
for any validator with the givenindex
. - Let
inactivity_penalty(state, index, epochs_since_finality) = base_reward(state, index) + get_effective_balance(state, index) * epochs_since_finality // INACTIVITY_PENALTY_QUOTIENT // 2
for any validator with the givenindex
.
Note: When applying penalties in the following balance recalculations implementers should make sure the uint64
does not underflow.
Justification and finalization
Note: Rewards and penalties are for participation in the previous epoch, so the "active validator" set is drawn from get_active_validator_indices(state.validator_registry, previous_epoch)
.
- Let
epochs_since_finality = next_epoch - state.finalized_epoch
.
Case 1: epochs_since_finality <= 4
:
- Expected FFG source:
- Any validator
index
inprevious_epoch_attester_indices
gainsbase_reward(state, index) * previous_epoch_attesting_balance // previous_total_balance
. - Any active validator
index
not inprevious_epoch_attester_indices
losesbase_reward(state, index)
.
- Any validator
- Expected FFG target:
- Any validator
index
inprevious_epoch_boundary_attester_indices
gainsbase_reward(state, index) * previous_epoch_boundary_attesting_balance // previous_total_balance
. - Any active validator
index
not inprevious_epoch_boundary_attester_indices
losesbase_reward(state, index)
.
- Any validator
- Expected beacon chain head:
- Any validator
index
inprevious_epoch_head_attester_indices
gainsbase_reward(state, index) * previous_epoch_head_attesting_balance // previous_total_balance)
. - Any active validator
index
not inprevious_epoch_head_attester_indices
losesbase_reward(state, index)
.
- Any validator
- Inclusion distance:
- Any validator
index
inprevious_epoch_attester_indices
gainsbase_reward(state, index) * MIN_ATTESTATION_INCLUSION_DELAY // inclusion_distance(state, index)
- Any validator
Case 2: epochs_since_finality > 4
:
- Any active validator
index
not inprevious_epoch_attester_indices
, losesinactivity_penalty(state, index, epochs_since_finality)
. - Any active validator
index
not inprevious_epoch_boundary_attester_indices
, losesinactivity_penalty(state, index, epochs_since_finality)
. - Any active validator
index
not inprevious_epoch_head_attester_indices
, losesbase_reward(state, index)
. - Any active validator
index
withvalidator.slashed == True
, loses2 * inactivity_penalty(state, index, epochs_since_finality) + base_reward(state, index)
. - Any validator
index
inprevious_epoch_attester_indices
losesbase_reward(state, index) - base_reward(state, index) * MIN_ATTESTATION_INCLUSION_DELAY // inclusion_distance(state, index)
Attestation inclusion
For each index
in previous_epoch_attester_indices
, we determine the proposer proposer_index = get_beacon_proposer_index(state, inclusion_slot(state, index))
and set state.validator_balances[proposer_index] += base_reward(state, index) // ATTESTATION_INCLUSION_REWARD_QUOTIENT
.
Crosslinks
For every slot in range(get_epoch_start_slot(previous_epoch), get_epoch_start_slot(current_epoch))
:
- Let
crosslink_committees_at_slot = get_crosslink_committees_at_slot(state, slot)
. - For every
(crosslink_committee, shard)
incrosslink_committees_at_slot
and everyindex
incrosslink_committee
:- If
index in attesting_validators(crosslink_committee)
,state.validator_balances[index] += base_reward(state, index) * total_attesting_balance(crosslink_committee) // get_total_balance(state, crosslink_committee))
. - If
index not in attesting_validators(crosslink_committee)
,state.validator_balances[index] -= base_reward(state, index)
.
- If
Ejections
- Run
process_ejections(state)
.
def process_ejections(state: BeaconState) -> None:
"""
Iterate through the validator registry
and eject active validators with balance below ``EJECTION_BALANCE``.
"""
for index in get_active_validator_indices(state.validator_registry, current_epoch(state)):
if state.validator_balances[index] < EJECTION_BALANCE:
exit_validator(state, index)
Validator registry and shuffling seed data
First, update the following:
- Set
state.previous_shuffling_epoch = state.current_shuffling_epoch
. - Set
state.previous_shuffling_start_shard = state.current_shuffling_start_shard
. - Set
state.previous_shuffling_seed = state.current_shuffling_seed
.
If the following are satisfied:
state.finalized_epoch > state.validator_registry_update_epoch
state.latest_crosslinks[shard].epoch > state.validator_registry_update_epoch
for every shard numbershard
in[(state.current_shuffling_start_shard + i) % SHARD_COUNT for i in range(get_current_epoch_committee_count(state))]
(that is, for every shard in the current committees)
update the validator registry and associated fields by running
def update_validator_registry(state: BeaconState) -> None:
"""
Update validator registry.
Note that this function mutates ``state``.
"""
current_epoch = get_current_epoch(state)
# The active validators
active_validator_indices = get_active_validator_indices(state.validator_registry, current_epoch)
# The total effective balance of active validators
total_balance = get_total_balance(state, active_validator_indices)
# The maximum balance churn in Gwei (for deposits and exits separately)
max_balance_churn = max(
MAX_DEPOSIT_AMOUNT,
total_balance // (2 * MAX_BALANCE_CHURN_QUOTIENT)
)
# Activate validators within the allowable balance churn
balance_churn = 0
for index, validator in enumerate(state.validator_registry):
if validator.activation_epoch == FAR_FUTURE_EPOCH and state.validator_balances[index] >= MAX_DEPOSIT_AMOUNT:
# Check the balance churn would be within the allowance
balance_churn += get_effective_balance(state, index)
if balance_churn > max_balance_churn:
break
# Activate validator
activate_validator(state, index, is_genesis=False)
# Exit validators within the allowable balance churn
balance_churn = 0
for index, validator in enumerate(state.validator_registry):
if validator.activation_epoch == FAR_FUTURE_EPOCH and validator.initiated_exit:
# Check the balance churn would be within the allowance
balance_churn += get_effective_balance(state, index)
if balance_churn > max_balance_churn:
break
# Exit validator
exit_validator(state, index)
state.validator_registry_update_epoch = current_epoch
and perform the following updates:
- Set
state.current_shuffling_epoch = next_epoch
- Set
state.current_shuffling_start_shard = (state.current_shuffling_start_shard + get_current_epoch_committee_count(state)) % SHARD_COUNT
- Set
state.current_shuffling_seed = generate_seed(state, state.current_shuffling_epoch)
If a validator registry update does not happen do the following:
- Let
epochs_since_last_registry_update = current_epoch - state.validator_registry_update_epoch
. - If
epochs_since_last_registry_update > 1
andis_power_of_two(epochs_since_last_registry_update)
:- Set
state.current_shuffling_epoch = next_epoch
. - Set
state.current_shuffling_seed = generate_seed(state, state.current_shuffling_epoch)
- Note that
state.current_shuffling_start_shard
is left unchanged.
- Set
Invariant: the active index root that is hashed into the shuffling seed actually is the hash_tree_root
of the validator set that is used for that epoch.
Regardless of whether or not a validator set change happens run process_slashings(state)
and process_exit_queue(state)
:
def process_slashings(state: BeaconState) -> None:
"""
Process the slashings.
Note that this function mutates ``state``.
"""
current_epoch = get_current_epoch(state)
active_validator_indices = get_active_validator_indices(state.validator_registry, current_epoch)
total_balance = sum(get_effective_balance(state, i) for i in active_validator_indices)
for index, validator in enumerate(state.validator_registry):
if validator.slashed and current_epoch == validator.withdrawable_epoch - LATEST_SLASHED_EXIT_LENGTH // 2:
epoch_index = current_epoch % LATEST_SLASHED_EXIT_LENGTH
total_at_start = state.latest_slashed_balances[(epoch_index + 1) % LATEST_SLASHED_EXIT_LENGTH]
total_at_end = state.latest_slashed_balances[epoch_index]
total_penalties = total_at_end - total_at_start
penalty = max(
get_effective_balance(state, index) * min(total_penalties * 3, total_balance) // total_balance,
get_effective_balance(state, index) // MIN_PENALTY_QUOTIENT
)
state.validator_balances[index] -= penalty
def process_exit_queue(state: BeaconState) -> None:
"""
Process the exit queue.
Note that this function mutates ``state``.
"""
def eligible(index):
validator = state.validator_registry[index]
# Filter out dequeued validators
if validator.withdrawable_epoch != FAR_FUTURE_EPOCH:
return False
# Dequeue if the minimum amount of time has passed
else:
return get_current_epoch(state) >= validator.exit_epoch + MIN_VALIDATOR_WITHDRAWABILITY_DELAY
eligible_indices = filter(eligible, list(range(len(state.validator_registry))))
# Sort in order of exit epoch, and validators that exit within the same epoch exit in order of validator index
sorted_indices = sorted(eligible_indices, key=lambda index: state.validator_registry[index].exit_epoch)
for dequeues, index in enumerate(sorted_indices):
if dequeues >= MAX_EXIT_DEQUEUES_PER_EPOCH:
break
prepare_validator_for_withdrawal(state, index)
Final updates
- Set
state.latest_active_index_roots[(next_epoch + ACTIVATION_EXIT_DELAY) % LATEST_ACTIVE_INDEX_ROOTS_LENGTH] = hash_tree_root(get_active_validator_indices(state.validator_registry, next_epoch + ACTIVATION_EXIT_DELAY))
. - Set
state.latest_slashed_balances[next_epoch % LATEST_SLASHED_EXIT_LENGTH] = state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH]
. - Set
state.latest_randao_mixes[next_epoch % LATEST_RANDAO_MIXES_LENGTH] = get_randao_mix(state, current_epoch)
. - Remove any
attestation
instate.latest_attestations
such thatslot_to_epoch(attestation.data.slot) < current_epoch
.
State root verification
Verify block.state_root == hash_tree_root(state)
if there exists a block
for the slot being processed.
References
This section is divided into Normative and Informative references. Normative references are those that must be read in order to implement this specification, while Informative references are merely that, information. An example of the former might be the details of a required consensus algorithm, and an example of the latter might be a pointer to research that demonstrates why a particular consensus algorithm might be better suited for inclusion in the standard than another.
Normative
Informative
casper-ffg
Casper the Friendly Finality Gadget. V. Buterin and V. Griffith. URL: https://arxiv.org/abs/1710.09437
python-poc
Python proof-of-concept implementation. Ethereum Foundation. URL: https://github.com/ethereum/beacon_chain
Copyright
Copyright and related rights waived via CC0.