eth2.0-specs/specs/phase0/beacon-chain.md

68 KiB

Ethereum 2.0 Phase 0 -- The Beacon Chain

Notice: This document is a work-in-progress for researchers and implementers.

Table of contents

Introduction

This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.

At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0, the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when Ethereum 1.0 deposit receipts are processed by the beacon chain, the activation balance is reached, and a queuing process is completed. Exit is either voluntary or done forcibly as a penalty for misbehavior. The primary source of load on the beacon chain is "attestations". Attestations are simultaneously availability votes for a shard block (Phase 1) and proof-of-stake votes for a beacon block (Phase 0).

Notation

Code snippets appearing in this style are to be interpreted as Python 3 code.

Custom types

We define the following Python custom types for type hinting and readability:

Name SSZ equivalent Description
Slot uint64 a slot number
Epoch uint64 an epoch number
CommitteeIndex uint64 a committee index at a slot
ValidatorIndex uint64 a validator registry index
Gwei uint64 an amount in Gwei
Root Bytes32 a Merkle root
Version Bytes4 a fork version number
DomainType Bytes4 a domain type
ForkDigest Bytes4 a digest of the current fork data
Domain Bytes32 a signature domain
BLSPubkey Bytes48 a BLS12-381 public key
BLSSignature Bytes96 a BLS12-381 signature

Constants

The following values are (non-configurable) constants used throughout the specification.

Name Value
GENESIS_SLOT Slot(0)
GENESIS_EPOCH Epoch(0)
FAR_FUTURE_EPOCH Epoch(2**64 - 1)
BASE_REWARDS_PER_EPOCH uint64(4)
DEPOSIT_CONTRACT_TREE_DEPTH uint64(2**5) (= 32)
JUSTIFICATION_BITS_LENGTH uint64(4)
ENDIANNESS 'little'

Configuration

Note: The default mainnet configuration values are included here for spec-design purposes. The different configurations for mainnet, testnets, and YAML-based testing can be found in the configs/constant_presets directory. These configurations are updated for releases and may be out of sync during dev changes.

Misc

Name Value
ETH1_FOLLOW_DISTANCE uint64(2**10) (= 1,024)
MAX_COMMITTEES_PER_SLOT uint64(2**6) (= 64)
TARGET_COMMITTEE_SIZE uint64(2**7) (= 128)
MAX_VALIDATORS_PER_COMMITTEE uint64(2**11) (= 2,048)
MIN_PER_EPOCH_CHURN_LIMIT uint64(2**2) (= 4)
CHURN_LIMIT_QUOTIENT uint64(2**16) (= 65,536)
SHUFFLE_ROUND_COUNT uint64(90)
MIN_GENESIS_ACTIVE_VALIDATOR_COUNT uint64(2**14) (= 16,384)
MIN_GENESIS_TIME uint64(1578009600) (Jan 3, 2020)
HYSTERESIS_QUOTIENT uint64(4)
HYSTERESIS_DOWNWARD_MULTIPLIER uint64(1)
HYSTERESIS_UPWARD_MULTIPLIER uint64(5)
PROPORTIONAL_SLASHING_MULTIPLIER uint64(3)
  • For the safety of committees, TARGET_COMMITTEE_SIZE exceeds the recommended minimum committee size of 111; with sufficient active validators (at least SLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE), the shuffling algorithm ensures committee sizes of at least TARGET_COMMITTEE_SIZE. (Unbiasable randomness with a Verifiable Delay Function (VDF) will improve committee robustness and lower the safe minimum committee size.)

Gwei values

Name Value
MIN_DEPOSIT_AMOUNT Gwei(2**0 * 10**9) (= 1,000,000,000)
MAX_EFFECTIVE_BALANCE Gwei(2**5 * 10**9) (= 32,000,000,000)
EJECTION_BALANCE Gwei(2**4 * 10**9) (= 16,000,000,000)
EFFECTIVE_BALANCE_INCREMENT Gwei(2**0 * 10**9) (= 1,000,000,000)

Initial values

Name Value
GENESIS_FORK_VERSION Version('0x00000000')
BLS_WITHDRAWAL_PREFIX Bytes1('0x00')

Time parameters

Name Value Unit Duration
GENESIS_DELAY uint64(172800) seconds 2 days
SECONDS_PER_SLOT uint64(12) seconds 12 seconds
SECONDS_PER_ETH1_BLOCK uint64(14) seconds 14 seconds
MIN_ATTESTATION_INCLUSION_DELAY uint64(2**0) (= 1) slots 12 seconds
SLOTS_PER_EPOCH uint64(2**5) (= 32) slots 6.4 minutes
MIN_SEED_LOOKAHEAD uint64(2**0) (= 1) epochs 6.4 minutes
MAX_SEED_LOOKAHEAD uint64(2**2) (= 4) epochs 25.6 minutes
MIN_EPOCHS_TO_INACTIVITY_PENALTY uint64(2**2) (= 4) epochs 25.6 minutes
EPOCHS_PER_ETH1_VOTING_PERIOD uint64(2**5) (= 32) epochs ~3.4 hours
SLOTS_PER_HISTORICAL_ROOT uint64(2**13) (= 8,192) slots ~27 hours
MIN_VALIDATOR_WITHDRAWABILITY_DELAY uint64(2**8) (= 256) epochs ~27 hours
SHARD_COMMITTEE_PERIOD uint64(2**8) (= 256) epochs ~27 hours

State list lengths

Name Value Unit Duration
EPOCHS_PER_HISTORICAL_VECTOR uint64(2**16) (= 65,536) epochs ~0.8 years
EPOCHS_PER_SLASHINGS_VECTOR uint64(2**13) (= 8,192) epochs ~36 days
HISTORICAL_ROOTS_LIMIT uint64(2**24) (= 16,777,216) historical roots ~52,262 years
VALIDATOR_REGISTRY_LIMIT uint64(2**40) (= 1,099,511,627,776) validators

Rewards and penalties

Name Value
BASE_REWARD_FACTOR uint64(2**6) (= 64)
WHISTLEBLOWER_REWARD_QUOTIENT uint64(2**9) (= 512)
PROPOSER_REWARD_QUOTIENT uint64(2**3) (= 8)
INACTIVITY_PENALTY_QUOTIENT uint64(2**24) (= 16,777,216)
MIN_SLASHING_PENALTY_QUOTIENT uint64(2**5) (= 32)
  • The INACTIVITY_PENALTY_QUOTIENT equals INVERSE_SQRT_E_DROP_TIME**2 where INVERSE_SQRT_E_DROP_TIME := 2**12 epochs (about 18 days) is the time it takes the inactivity penalty to reduce the balance of non-participating validators to about 1/sqrt(e) ~= 60.6%. Indeed, the balance retained by offline validators after n epochs is about (1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(n**2/2); so after INVERSE_SQRT_E_DROP_TIME epochs, it is roughly (1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(INACTIVITY_PENALTY_QUOTIENT/2) ~= 1/sqrt(e).

Max operations per block

Name Value
MAX_PROPOSER_SLASHINGS 2**4 (= 16)
MAX_ATTESTER_SLASHINGS 2**1 (= 2)
MAX_ATTESTATIONS 2**7 (= 128)
MAX_DEPOSITS 2**4 (= 16)
MAX_VOLUNTARY_EXITS 2**4 (= 16)

Domain types

Name Value
DOMAIN_BEACON_PROPOSER DomainType('0x00000000')
DOMAIN_BEACON_ATTESTER DomainType('0x01000000')
DOMAIN_RANDAO DomainType('0x02000000')
DOMAIN_DEPOSIT DomainType('0x03000000')
DOMAIN_VOLUNTARY_EXIT DomainType('0x04000000')
DOMAIN_SELECTION_PROOF DomainType('0x05000000')
DOMAIN_AGGREGATE_AND_PROOF DomainType('0x06000000')

Containers

The following types are SimpleSerialize (SSZ) containers.

Note: The definitions are ordered topologically to facilitate execution of the spec.

Note: Fields missing in container instantiations default to their zero value.

Misc dependencies

Fork

class Fork(Container):
    previous_version: Version
    current_version: Version
    epoch: Epoch  # Epoch of latest fork

ForkData

class ForkData(Container):
    current_version: Version
    genesis_validators_root: Root

Checkpoint

class Checkpoint(Container):
    epoch: Epoch
    root: Root

Validator

class Validator(Container):
    pubkey: BLSPubkey
    withdrawal_credentials: Bytes32  # Commitment to pubkey for withdrawals
    effective_balance: Gwei  # Balance at stake
    slashed: boolean
    # Status epochs
    activation_eligibility_epoch: Epoch  # When criteria for activation were met
    activation_epoch: Epoch
    exit_epoch: Epoch
    withdrawable_epoch: Epoch  # When validator can withdraw funds

AttestationData

class AttestationData(Container):
    slot: Slot
    index: CommitteeIndex
    # LMD GHOST vote
    beacon_block_root: Root
    # FFG vote
    source: Checkpoint
    target: Checkpoint

IndexedAttestation

class IndexedAttestation(Container):
    attesting_indices: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE]
    data: AttestationData
    signature: BLSSignature

PendingAttestation

class PendingAttestation(Container):
    aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
    data: AttestationData
    inclusion_delay: Slot
    proposer_index: ValidatorIndex

Eth1Data

class Eth1Data(Container):
    deposit_root: Root
    deposit_count: uint64
    block_hash: Bytes32

HistoricalBatch

class HistoricalBatch(Container):
    block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
    state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]

DepositMessage

class DepositMessage(Container):
    pubkey: BLSPubkey
    withdrawal_credentials: Bytes32
    amount: Gwei

DepositData

class DepositData(Container):
    pubkey: BLSPubkey
    withdrawal_credentials: Bytes32
    amount: Gwei
    signature: BLSSignature  # Signing over DepositMessage

BeaconBlockHeader

class BeaconBlockHeader(Container):
    slot: Slot
    proposer_index: ValidatorIndex
    parent_root: Root
    state_root: Root
    body_root: Root

SigningData

class SigningData(Container):
    object_root: Root
    domain: Domain

Beacon operations

ProposerSlashing

class ProposerSlashing(Container):
    signed_header_1: SignedBeaconBlockHeader
    signed_header_2: SignedBeaconBlockHeader

AttesterSlashing

class AttesterSlashing(Container):
    attestation_1: IndexedAttestation
    attestation_2: IndexedAttestation

Attestation

class Attestation(Container):
    aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
    data: AttestationData
    signature: BLSSignature

Deposit

class Deposit(Container):
    proof: Vector[Bytes32, DEPOSIT_CONTRACT_TREE_DEPTH + 1]  # Merkle path to deposit root
    data: DepositData

VoluntaryExit

class VoluntaryExit(Container):
    epoch: Epoch  # Earliest epoch when voluntary exit can be processed
    validator_index: ValidatorIndex

Beacon blocks

BeaconBlockBody

class BeaconBlockBody(Container):
    randao_reveal: BLSSignature
    eth1_data: Eth1Data  # Eth1 data vote
    graffiti: Bytes32  # Arbitrary data
    # Operations
    proposer_slashings: List[ProposerSlashing, MAX_PROPOSER_SLASHINGS]
    attester_slashings: List[AttesterSlashing, MAX_ATTESTER_SLASHINGS]
    attestations: List[Attestation, MAX_ATTESTATIONS]
    deposits: List[Deposit, MAX_DEPOSITS]
    voluntary_exits: List[SignedVoluntaryExit, MAX_VOLUNTARY_EXITS]

BeaconBlock

class BeaconBlock(Container):
    slot: Slot
    proposer_index: ValidatorIndex
    parent_root: Root
    state_root: Root
    body: BeaconBlockBody

Beacon state

BeaconState

class BeaconState(Container):
    # Versioning
    genesis_time: uint64
    genesis_validators_root: Root
    slot: Slot
    fork: Fork
    # History
    latest_block_header: BeaconBlockHeader
    block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
    state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
    historical_roots: List[Root, HISTORICAL_ROOTS_LIMIT]
    # Eth1
    eth1_data: Eth1Data
    eth1_data_votes: List[Eth1Data, EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH]
    eth1_deposit_index: uint64
    # Registry
    validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
    balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]
    # Randomness
    randao_mixes: Vector[Bytes32, EPOCHS_PER_HISTORICAL_VECTOR]
    # Slashings
    slashings: Vector[Gwei, EPOCHS_PER_SLASHINGS_VECTOR]  # Per-epoch sums of slashed effective balances
    # Attestations
    previous_epoch_attestations: List[PendingAttestation, MAX_ATTESTATIONS * SLOTS_PER_EPOCH]
    current_epoch_attestations: List[PendingAttestation, MAX_ATTESTATIONS * SLOTS_PER_EPOCH]
    # Finality
    justification_bits: Bitvector[JUSTIFICATION_BITS_LENGTH]  # Bit set for every recent justified epoch
    previous_justified_checkpoint: Checkpoint  # Previous epoch snapshot
    current_justified_checkpoint: Checkpoint
    finalized_checkpoint: Checkpoint

Signed envelopes

SignedVoluntaryExit

class SignedVoluntaryExit(Container):
    message: VoluntaryExit
    signature: BLSSignature

SignedBeaconBlock

class SignedBeaconBlock(Container):
    message: BeaconBlock
    signature: BLSSignature

SignedBeaconBlockHeader

class SignedBeaconBlockHeader(Container):
    message: BeaconBlockHeader
    signature: BLSSignature

Helper functions

Note: The definitions below are for specification purposes and are not necessarily optimal implementations.

Math

integer_squareroot

def integer_squareroot(n: uint64) -> uint64:
    """
    Return the largest integer ``x`` such that ``x**2 <= n``.
    """
    x = n
    y = (x + 1) // 2
    while y < x:
        x = y
        y = (x + n // x) // 2
    return x

xor

def xor(bytes_1: Bytes32, bytes_2: Bytes32) -> Bytes32:
    """
    Return the exclusive-or of two 32-byte strings.
    """
    return Bytes32(a ^ b for a, b in zip(bytes_1, bytes_2))

uint_to_bytes

def uint_to_bytes(n: uint) -> bytes is a function for serializing the uint type object to bytes in ENDIANNESS-endian. The expected length of the output is the byte-length of the uint type.

bytes_to_uint64

def bytes_to_uint64(data: bytes) -> uint64:
    """
    Return the integer deserialization of ``data`` interpreted as ``ENDIANNESS``-endian.
    """
    return uint64(int.from_bytes(data, ENDIANNESS))

Crypto

hash

def hash(data: bytes) -> Bytes32 is SHA256.

hash_tree_root

def hash_tree_root(object: SSZSerializable) -> Root is a function for hashing objects into a single root by utilizing a hash tree structure, as defined in the SSZ spec.

BLS Signatures

Eth2 makes use of BLS signatures as specified in the IETF draft BLS specification draft-irtf-cfrg-bls-signature-04. Specifically, eth2 uses the BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_ ciphersuite which implements the following interfaces:

  • def Sign(SK: int, message: Bytes) -> BLSSignature
  • def Verify(PK: BLSPubkey, message: Bytes, signature: BLSSignature) -> bool
  • def Aggregate(signatures: Sequence[BLSSignature]) -> BLSSignature
  • def FastAggregateVerify(PKs: Sequence[BLSPubkey], message: Bytes, signature: BLSSignature) -> bool
  • def AggregateVerify(PKs: Sequence[BLSPubkey], messages: Sequence[Bytes], signature: BLSSignature) -> bool

Within these specifications, BLS signatures are treated as a module for notational clarity, thus to verify a signature bls.Verify(...) is used.

Predicates

is_active_validator

def is_active_validator(validator: Validator, epoch: Epoch) -> bool:
    """
    Check if ``validator`` is active.
    """
    return validator.activation_epoch <= epoch < validator.exit_epoch

is_eligible_for_activation_queue

def is_eligible_for_activation_queue(validator: Validator) -> bool:
    """
    Check if ``validator`` is eligible to be placed into the activation queue.
    """
    return (
        validator.activation_eligibility_epoch == FAR_FUTURE_EPOCH
        and validator.effective_balance == MAX_EFFECTIVE_BALANCE
    )

is_eligible_for_activation

def is_eligible_for_activation(state: BeaconState, validator: Validator) -> bool:
    """
    Check if ``validator`` is eligible for activation.
    """
    return (
        # Placement in queue is finalized
        validator.activation_eligibility_epoch <= state.finalized_checkpoint.epoch
        # Has not yet been activated
        and validator.activation_epoch == FAR_FUTURE_EPOCH
    )

is_slashable_validator

def is_slashable_validator(validator: Validator, epoch: Epoch) -> bool:
    """
    Check if ``validator`` is slashable.
    """
    return (not validator.slashed) and (validator.activation_epoch <= epoch < validator.withdrawable_epoch)

is_slashable_attestation_data

def is_slashable_attestation_data(data_1: AttestationData, data_2: AttestationData) -> bool:
    """
    Check if ``data_1`` and ``data_2`` are slashable according to Casper FFG rules.
    """
    return (
        # Double vote
        (data_1 != data_2 and data_1.target.epoch == data_2.target.epoch) or
        # Surround vote
        (data_1.source.epoch < data_2.source.epoch and data_2.target.epoch < data_1.target.epoch)
    )

is_valid_indexed_attestation

def is_valid_indexed_attestation(state: BeaconState, indexed_attestation: IndexedAttestation) -> bool:
    """
    Check if ``indexed_attestation`` is not empty, has sorted and unique indices and has a valid aggregate signature.
    """
    # Verify indices are sorted and unique
    indices = indexed_attestation.attesting_indices
    if len(indices) == 0 or not indices == sorted(set(indices)):
        return False
    # Verify aggregate signature
    pubkeys = [state.validators[i].pubkey for i in indices]
    domain = get_domain(state, DOMAIN_BEACON_ATTESTER, indexed_attestation.data.target.epoch)
    signing_root = compute_signing_root(indexed_attestation.data, domain)
    return bls.FastAggregateVerify(pubkeys, signing_root, indexed_attestation.signature)

is_valid_merkle_branch

def is_valid_merkle_branch(leaf: Bytes32, branch: Sequence[Bytes32], depth: uint64, index: uint64, root: Root) -> bool:
    """
    Check if ``leaf`` at ``index`` verifies against the Merkle ``root`` and ``branch``.
    """
    value = leaf
    for i in range(depth):
        if index // (2**i) % 2:
            value = hash(branch[i] + value)
        else:
            value = hash(value + branch[i])
    return value == root

Misc

compute_shuffled_index

def compute_shuffled_index(index: uint64, index_count: uint64, seed: Bytes32) -> uint64:
    """
    Return the shuffled index corresponding to ``seed`` (and ``index_count``).
    """
    assert index < index_count

    # Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
    # See the 'generalized domain' algorithm on page 3
    for current_round in range(SHUFFLE_ROUND_COUNT):
        pivot = bytes_to_uint64(hash(seed + uint_to_bytes(uint8(current_round)))[0:8]) % index_count
        flip = (pivot + index_count - index) % index_count
        position = max(index, flip)
        source = hash(
            seed
            + uint_to_bytes(uint8(current_round))
            + uint_to_bytes(uint32(position // 256))
        )
        byte = uint8(source[(position % 256) // 8])
        bit = (byte >> (position % 8)) % 2
        index = flip if bit else index

    return index

compute_proposer_index

def compute_proposer_index(state: BeaconState, indices: Sequence[ValidatorIndex], seed: Bytes32) -> ValidatorIndex:
    """
    Return from ``indices`` a random index sampled by effective balance.
    """
    assert len(indices) > 0
    MAX_RANDOM_BYTE = 2**8 - 1
    i = uint64(0)
    total = uint64(len(indices))
    while True:
        candidate_index = indices[compute_shuffled_index(i % total, total, seed)]
        random_byte = hash(seed + uint_to_bytes(uint64(i // 32)))[i % 32]
        effective_balance = state.validators[candidate_index].effective_balance
        if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:
            return candidate_index
        i += 1

compute_committee

def compute_committee(indices: Sequence[ValidatorIndex],
                      seed: Bytes32,
                      index: uint64,
                      count: uint64) -> Sequence[ValidatorIndex]:
    """
    Return the committee corresponding to ``indices``, ``seed``, ``index``, and committee ``count``.
    """
    start = (len(indices) * index) // count
    end = (len(indices) * uint64(index + 1)) // count
    return [indices[compute_shuffled_index(uint64(i), uint64(len(indices)), seed)] for i in range(start, end)]

compute_epoch_at_slot

def compute_epoch_at_slot(slot: Slot) -> Epoch:
    """
    Return the epoch number at ``slot``.
    """
    return Epoch(slot // SLOTS_PER_EPOCH)

compute_start_slot_at_epoch

def compute_start_slot_at_epoch(epoch: Epoch) -> Slot:
    """
    Return the start slot of ``epoch``.
    """
    return Slot(epoch * SLOTS_PER_EPOCH)

compute_activation_exit_epoch

def compute_activation_exit_epoch(epoch: Epoch) -> Epoch:
    """
    Return the epoch during which validator activations and exits initiated in ``epoch`` take effect.
    """
    return Epoch(epoch + 1 + MAX_SEED_LOOKAHEAD)

compute_fork_data_root

def compute_fork_data_root(current_version: Version, genesis_validators_root: Root) -> Root:
    """
    Return the 32-byte fork data root for the ``current_version`` and ``genesis_validators_root``.
    This is used primarily in signature domains to avoid collisions across forks/chains.
    """
    return hash_tree_root(ForkData(
        current_version=current_version,
        genesis_validators_root=genesis_validators_root,
    ))

compute_fork_digest

def compute_fork_digest(current_version: Version, genesis_validators_root: Root) -> ForkDigest:
    """
    Return the 4-byte fork digest for the ``current_version`` and ``genesis_validators_root``.
    This is a digest primarily used for domain separation on the p2p layer.
    4-bytes suffices for practical separation of forks/chains.
    """
    return ForkDigest(compute_fork_data_root(current_version, genesis_validators_root)[:4])

compute_domain

def compute_domain(domain_type: DomainType, fork_version: Version=None, genesis_validators_root: Root=None) -> Domain:
    """
    Return the domain for the ``domain_type`` and ``fork_version``.
    """
    if fork_version is None:
        fork_version = GENESIS_FORK_VERSION
    if genesis_validators_root is None:
        genesis_validators_root = Root()  # all bytes zero by default
    fork_data_root = compute_fork_data_root(fork_version, genesis_validators_root)
    return Domain(domain_type + fork_data_root[:28])

compute_signing_root

def compute_signing_root(ssz_object: SSZObject, domain: Domain) -> Root:
    """
    Return the signing root for the corresponding signing data.
    """
    return hash_tree_root(SigningData(
        object_root=hash_tree_root(ssz_object),
        domain=domain,
    ))

Beacon state accessors

get_current_epoch

def get_current_epoch(state: BeaconState) -> Epoch:
    """
    Return the current epoch.
    """
    return compute_epoch_at_slot(state.slot)

get_previous_epoch

def get_previous_epoch(state: BeaconState) -> Epoch:
    """`
    Return the previous epoch (unless the current epoch is ``GENESIS_EPOCH``).
    """
    current_epoch = get_current_epoch(state)
    return GENESIS_EPOCH if current_epoch == GENESIS_EPOCH else Epoch(current_epoch - 1)

get_block_root

def get_block_root(state: BeaconState, epoch: Epoch) -> Root:
    """
    Return the block root at the start of a recent ``epoch``.
    """
    return get_block_root_at_slot(state, compute_start_slot_at_epoch(epoch))

get_block_root_at_slot

def get_block_root_at_slot(state: BeaconState, slot: Slot) -> Root:
    """
    Return the block root at a recent ``slot``.
    """
    assert slot < state.slot <= slot + SLOTS_PER_HISTORICAL_ROOT
    return state.block_roots[slot % SLOTS_PER_HISTORICAL_ROOT]

get_randao_mix

def get_randao_mix(state: BeaconState, epoch: Epoch) -> Bytes32:
    """
    Return the randao mix at a recent ``epoch``.
    """
    return state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR]

get_active_validator_indices

def get_active_validator_indices(state: BeaconState, epoch: Epoch) -> Sequence[ValidatorIndex]:
    """
    Return the sequence of active validator indices at ``epoch``.
    """
    return [ValidatorIndex(i) for i, v in enumerate(state.validators) if is_active_validator(v, epoch)]

get_validator_churn_limit

def get_validator_churn_limit(state: BeaconState) -> uint64:
    """
    Return the validator churn limit for the current epoch.
    """
    active_validator_indices = get_active_validator_indices(state, get_current_epoch(state))
    return max(MIN_PER_EPOCH_CHURN_LIMIT, uint64(len(active_validator_indices)) // CHURN_LIMIT_QUOTIENT)

get_seed

def get_seed(state: BeaconState, epoch: Epoch, domain_type: DomainType) -> Bytes32:
    """
    Return the seed at ``epoch``.
    """
    mix = get_randao_mix(state, Epoch(epoch + EPOCHS_PER_HISTORICAL_VECTOR - MIN_SEED_LOOKAHEAD - 1))  # Avoid underflow
    return hash(domain_type + uint_to_bytes(epoch) + mix)

get_committee_count_per_slot

def get_committee_count_per_slot(state: BeaconState, epoch: Epoch) -> uint64:
    """
    Return the number of committees in each slot for the given ``epoch``.
    """
    return max(uint64(1), min(
        MAX_COMMITTEES_PER_SLOT,
        uint64(len(get_active_validator_indices(state, epoch))) // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE,
    ))

get_beacon_committee

def get_beacon_committee(state: BeaconState, slot: Slot, index: CommitteeIndex) -> Sequence[ValidatorIndex]:
    """
    Return the beacon committee at ``slot`` for ``index``.
    """
    epoch = compute_epoch_at_slot(slot)
    committees_per_slot = get_committee_count_per_slot(state, epoch)
    return compute_committee(
        indices=get_active_validator_indices(state, epoch),
        seed=get_seed(state, epoch, DOMAIN_BEACON_ATTESTER),
        index=(slot % SLOTS_PER_EPOCH) * committees_per_slot + index,
        count=committees_per_slot * SLOTS_PER_EPOCH,
    )

get_beacon_proposer_index

def get_beacon_proposer_index(state: BeaconState) -> ValidatorIndex:
    """
    Return the beacon proposer index at the current slot.
    """
    epoch = get_current_epoch(state)
    seed = hash(get_seed(state, epoch, DOMAIN_BEACON_PROPOSER) + uint_to_bytes(state.slot))
    indices = get_active_validator_indices(state, epoch)
    return compute_proposer_index(state, indices, seed)

get_total_balance

def get_total_balance(state: BeaconState, indices: Set[ValidatorIndex]) -> Gwei:
    """
    Return the combined effective balance of the ``indices``.
    ``EFFECTIVE_BALANCE_INCREMENT`` Gwei minimum to avoid divisions by zero.
    Math safe up to ~10B ETH, afterwhich this overflows uint64.
    """
    return Gwei(max(EFFECTIVE_BALANCE_INCREMENT, sum([state.validators[index].effective_balance for index in indices])))

get_total_active_balance

def get_total_active_balance(state: BeaconState) -> Gwei:
    """
    Return the combined effective balance of the active validators.
    Note: ``get_total_balance`` returns ``EFFECTIVE_BALANCE_INCREMENT`` Gwei minimum to avoid divisions by zero.
    """
    return get_total_balance(state, set(get_active_validator_indices(state, get_current_epoch(state))))

get_domain

def get_domain(state: BeaconState, domain_type: DomainType, epoch: Epoch=None) -> Domain:
    """
    Return the signature domain (fork version concatenated with domain type) of a message.
    """
    epoch = get_current_epoch(state) if epoch is None else epoch
    fork_version = state.fork.previous_version if epoch < state.fork.epoch else state.fork.current_version
    return compute_domain(domain_type, fork_version, state.genesis_validators_root)

get_indexed_attestation

def get_indexed_attestation(state: BeaconState, attestation: Attestation) -> IndexedAttestation:
    """
    Return the indexed attestation corresponding to ``attestation``.
    """
    attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits)

    return IndexedAttestation(
        attesting_indices=sorted(attesting_indices),
        data=attestation.data,
        signature=attestation.signature,
    )

get_attesting_indices

def get_attesting_indices(state: BeaconState,
                          data: AttestationData,
                          bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]) -> Set[ValidatorIndex]:
    """
    Return the set of attesting indices corresponding to ``data`` and ``bits``.
    """
    committee = get_beacon_committee(state, data.slot, data.index)
    return set(index for i, index in enumerate(committee) if bits[i])

Beacon state mutators

increase_balance

def increase_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
    """
    Increase the validator balance at index ``index`` by ``delta``.
    """
    state.balances[index] += delta

decrease_balance

def decrease_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
    """
    Decrease the validator balance at index ``index`` by ``delta``, with underflow protection.
    """
    state.balances[index] = 0 if delta > state.balances[index] else state.balances[index] - delta

initiate_validator_exit

def initiate_validator_exit(state: BeaconState, index: ValidatorIndex) -> None:
    """
    Initiate the exit of the validator with index ``index``.
    """
    # Return if validator already initiated exit
    validator = state.validators[index]
    if validator.exit_epoch != FAR_FUTURE_EPOCH:
        return

    # Compute exit queue epoch
    exit_epochs = [v.exit_epoch for v in state.validators if v.exit_epoch != FAR_FUTURE_EPOCH]
    exit_queue_epoch = max(exit_epochs + [compute_activation_exit_epoch(get_current_epoch(state))])
    exit_queue_churn = len([v for v in state.validators if v.exit_epoch == exit_queue_epoch])
    if exit_queue_churn >= get_validator_churn_limit(state):
        exit_queue_epoch += Epoch(1)

    # Set validator exit epoch and withdrawable epoch
    validator.exit_epoch = exit_queue_epoch
    validator.withdrawable_epoch = Epoch(validator.exit_epoch + MIN_VALIDATOR_WITHDRAWABILITY_DELAY)

slash_validator

def slash_validator(state: BeaconState,
                    slashed_index: ValidatorIndex,
                    whistleblower_index: ValidatorIndex=None) -> None:
    """
    Slash the validator with index ``slashed_index``.
    """
    epoch = get_current_epoch(state)
    initiate_validator_exit(state, slashed_index)
    validator = state.validators[slashed_index]
    validator.slashed = True
    validator.withdrawable_epoch = max(validator.withdrawable_epoch, Epoch(epoch + EPOCHS_PER_SLASHINGS_VECTOR))
    state.slashings[epoch % EPOCHS_PER_SLASHINGS_VECTOR] += validator.effective_balance
    decrease_balance(state, slashed_index, validator.effective_balance // MIN_SLASHING_PENALTY_QUOTIENT)

    # Apply proposer and whistleblower rewards
    proposer_index = get_beacon_proposer_index(state)
    if whistleblower_index is None:
        whistleblower_index = proposer_index
    whistleblower_reward = Gwei(validator.effective_balance // WHISTLEBLOWER_REWARD_QUOTIENT)
    proposer_reward = Gwei(whistleblower_reward // PROPOSER_REWARD_QUOTIENT)
    increase_balance(state, proposer_index, proposer_reward)
    increase_balance(state, whistleblower_index, Gwei(whistleblower_reward - proposer_reward))

Genesis

Before the Ethereum 2.0 genesis has been triggered, and for every Ethereum 1.0 block, let candidate_state = initialize_beacon_state_from_eth1(eth1_block_hash, eth1_timestamp, deposits) where:

  • eth1_block_hash is the hash of the Ethereum 1.0 block
  • eth1_timestamp is the Unix timestamp corresponding to eth1_block_hash
  • deposits is the sequence of all deposits, ordered chronologically, up to (and including) the block with hash eth1_block_hash

Eth1 blocks must only be considered once they are at least SECONDS_PER_ETH1_BLOCK * ETH1_FOLLOW_DISTANCE seconds old (i.e. eth1_timestamp + SECONDS_PER_ETH1_BLOCK * ETH1_FOLLOW_DISTANCE <= current_unix_time). Due to this constraint, if GENESIS_DELAY < SECONDS_PER_ETH1_BLOCK * ETH1_FOLLOW_DISTANCE, then the genesis_time can happen before the time/state is first known. Values should be configured to avoid this case.

def initialize_beacon_state_from_eth1(eth1_block_hash: Bytes32,
                                      eth1_timestamp: uint64,
                                      deposits: Sequence[Deposit]) -> BeaconState:
    fork = Fork(
        previous_version=GENESIS_FORK_VERSION,
        current_version=GENESIS_FORK_VERSION,
        epoch=GENESIS_EPOCH,
    )
    state = BeaconState(
        genesis_time=eth1_timestamp + GENESIS_DELAY,
        fork=fork,
        eth1_data=Eth1Data(block_hash=eth1_block_hash, deposit_count=len(deposits)),
        latest_block_header=BeaconBlockHeader(body_root=hash_tree_root(BeaconBlockBody())),
        randao_mixes=[eth1_block_hash] * EPOCHS_PER_HISTORICAL_VECTOR,  # Seed RANDAO with Eth1 entropy
    )

    # Process deposits
    leaves = list(map(lambda deposit: deposit.data, deposits))
    for index, deposit in enumerate(deposits):
        deposit_data_list = List[DepositData, 2**DEPOSIT_CONTRACT_TREE_DEPTH](*leaves[:index + 1])
        state.eth1_data.deposit_root = hash_tree_root(deposit_data_list)
        process_deposit(state, deposit)

    # Process activations
    for index, validator in enumerate(state.validators):
        balance = state.balances[index]
        validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
        if validator.effective_balance == MAX_EFFECTIVE_BALANCE:
            validator.activation_eligibility_epoch = GENESIS_EPOCH
            validator.activation_epoch = GENESIS_EPOCH

    # Set genesis validators root for domain separation and chain versioning
    state.genesis_validators_root = hash_tree_root(state.validators)

    return state

Note: The ETH1 block with eth1_timestamp meeting the minimum genesis active validator count criteria can also occur before MIN_GENESIS_TIME.

Genesis state

Let genesis_state = candidate_state whenever is_valid_genesis_state(candidate_state) is True for the first time.

def is_valid_genesis_state(state: BeaconState) -> bool:
    if state.genesis_time < MIN_GENESIS_TIME:
        return False
    if len(get_active_validator_indices(state, GENESIS_EPOCH)) < MIN_GENESIS_ACTIVE_VALIDATOR_COUNT:
        return False
    return True

Note: The is_valid_genesis_state function (including MIN_GENESIS_TIME and MIN_GENESIS_ACTIVE_VALIDATOR_COUNT) is a placeholder for testing. It has yet to be finalized by the community, and can be updated as necessary.

Genesis block

Let genesis_block = BeaconBlock(state_root=hash_tree_root(genesis_state)).

Beacon chain state transition function

The post-state corresponding to a pre-state state and a signed block signed_block is defined as state_transition(state, signed_block). State transitions that trigger an unhandled exception (e.g. a failed assert or an out-of-range list access) are considered invalid. State transitions that cause a uint64 overflow or underflow are also considered invalid.

def state_transition(state: BeaconState, signed_block: SignedBeaconBlock, validate_result: bool=True) -> BeaconState:
    block = signed_block.message
    # Process slots (including those with no blocks) since block
    process_slots(state, block.slot)
    # Verify signature
    if validate_result:
        assert verify_block_signature(state, signed_block)
    # Process block
    process_block(state, block)
    # Verify state root
    if validate_result:
        assert block.state_root == hash_tree_root(state)
    # Return post-state
    return state
def verify_block_signature(state: BeaconState, signed_block: SignedBeaconBlock) -> bool:
    proposer = state.validators[signed_block.message.proposer_index]
    signing_root = compute_signing_root(signed_block.message, get_domain(state, DOMAIN_BEACON_PROPOSER))
    return bls.Verify(proposer.pubkey, signing_root, signed_block.signature)
def process_slots(state: BeaconState, slot: Slot) -> None:
    assert state.slot < slot
    while state.slot < slot:
        process_slot(state)
        # Process epoch on the start slot of the next epoch
        if (state.slot + 1) % SLOTS_PER_EPOCH == 0:
            process_epoch(state)
        state.slot = Slot(state.slot + 1)
def process_slot(state: BeaconState) -> None:
    # Cache state root
    previous_state_root = hash_tree_root(state)
    state.state_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_state_root
    # Cache latest block header state root
    if state.latest_block_header.state_root == Bytes32():
        state.latest_block_header.state_root = previous_state_root
    # Cache block root
    previous_block_root = hash_tree_root(state.latest_block_header)
    state.block_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_block_root

Epoch processing

def process_epoch(state: BeaconState) -> None:
    process_justification_and_finalization(state)
    process_rewards_and_penalties(state)
    process_registry_updates(state)
    process_slashings(state)
    process_final_updates(state)

Helper functions

def get_matching_source_attestations(state: BeaconState, epoch: Epoch) -> Sequence[PendingAttestation]:
    assert epoch in (get_previous_epoch(state), get_current_epoch(state))
    return state.current_epoch_attestations if epoch == get_current_epoch(state) else state.previous_epoch_attestations
def get_matching_target_attestations(state: BeaconState, epoch: Epoch) -> Sequence[PendingAttestation]:
    return [
        a for a in get_matching_source_attestations(state, epoch)
        if a.data.target.root == get_block_root(state, epoch)
    ]
def get_matching_head_attestations(state: BeaconState, epoch: Epoch) -> Sequence[PendingAttestation]:
    return [
        a for a in get_matching_target_attestations(state, epoch)
        if a.data.beacon_block_root == get_block_root_at_slot(state, a.data.slot)
    ]
def get_unslashed_attesting_indices(state: BeaconState,
                                    attestations: Sequence[PendingAttestation]) -> Set[ValidatorIndex]:
    output = set()  # type: Set[ValidatorIndex]
    for a in attestations:
        output = output.union(get_attesting_indices(state, a.data, a.aggregation_bits))
    return set(filter(lambda index: not state.validators[index].slashed, output))
def get_attesting_balance(state: BeaconState, attestations: Sequence[PendingAttestation]) -> Gwei:
    """
    Return the combined effective balance of the set of unslashed validators participating in ``attestations``.
    Note: ``get_total_balance`` returns ``EFFECTIVE_BALANCE_INCREMENT`` Gwei minimum to avoid divisions by zero.
    """
    return get_total_balance(state, get_unslashed_attesting_indices(state, attestations))

Justification and finalization

def process_justification_and_finalization(state: BeaconState) -> None:
    # Initial FFG checkpoint values have a `0x00` stub for `root`.
    # Skip FFG updates in the first two epochs to avoid corner cases that might result in modifying this stub.
    if get_current_epoch(state) <= GENESIS_EPOCH + 1:
        return

    previous_epoch = get_previous_epoch(state)
    current_epoch = get_current_epoch(state)
    old_previous_justified_checkpoint = state.previous_justified_checkpoint
    old_current_justified_checkpoint = state.current_justified_checkpoint

    # Process justifications
    state.previous_justified_checkpoint = state.current_justified_checkpoint
    state.justification_bits[1:] = state.justification_bits[:JUSTIFICATION_BITS_LENGTH - 1]
    state.justification_bits[0] = 0b0
    matching_target_attestations = get_matching_target_attestations(state, previous_epoch)  # Previous epoch
    if get_attesting_balance(state, matching_target_attestations) * 3 >= get_total_active_balance(state) * 2:
        state.current_justified_checkpoint = Checkpoint(epoch=previous_epoch,
                                                        root=get_block_root(state, previous_epoch))
        state.justification_bits[1] = 0b1
    matching_target_attestations = get_matching_target_attestations(state, current_epoch)  # Current epoch
    if get_attesting_balance(state, matching_target_attestations) * 3 >= get_total_active_balance(state) * 2:
        state.current_justified_checkpoint = Checkpoint(epoch=current_epoch,
                                                        root=get_block_root(state, current_epoch))
        state.justification_bits[0] = 0b1

    # Process finalizations
    bits = state.justification_bits
    # The 2nd/3rd/4th most recent epochs are justified, the 2nd using the 4th as source
    if all(bits[1:4]) and old_previous_justified_checkpoint.epoch + 3 == current_epoch:
        state.finalized_checkpoint = old_previous_justified_checkpoint
    # The 2nd/3rd most recent epochs are justified, the 2nd using the 3rd as source
    if all(bits[1:3]) and old_previous_justified_checkpoint.epoch + 2 == current_epoch:
        state.finalized_checkpoint = old_previous_justified_checkpoint
    # The 1st/2nd/3rd most recent epochs are justified, the 1st using the 3rd as source
    if all(bits[0:3]) and old_current_justified_checkpoint.epoch + 2 == current_epoch:
        state.finalized_checkpoint = old_current_justified_checkpoint
    # The 1st/2nd most recent epochs are justified, the 1st using the 2nd as source
    if all(bits[0:2]) and old_current_justified_checkpoint.epoch + 1 == current_epoch:
        state.finalized_checkpoint = old_current_justified_checkpoint

Rewards and penalties

Helpers
def get_base_reward(state: BeaconState, index: ValidatorIndex) -> Gwei:
    total_balance = get_total_active_balance(state)
    effective_balance = state.validators[index].effective_balance
    return Gwei(effective_balance * BASE_REWARD_FACTOR // integer_squareroot(total_balance) // BASE_REWARDS_PER_EPOCH)
def get_proposer_reward(state: BeaconState, attesting_index: ValidatorIndex) -> Gwei:
    return Gwei(get_base_reward(state, attesting_index) // PROPOSER_REWARD_QUOTIENT)
def get_finality_delay(state: BeaconState) -> uint64:
    return get_previous_epoch(state) - state.finalized_checkpoint.epoch
def is_in_inactivity_leak(state: BeaconState) -> bool:
    return get_finality_delay(state) > MIN_EPOCHS_TO_INACTIVITY_PENALTY
def get_eligible_validator_indices(state: BeaconState) -> Sequence[ValidatorIndex]:
    previous_epoch = get_previous_epoch(state)
    return [
        ValidatorIndex(index) for index, v in enumerate(state.validators)
        if is_active_validator(v, previous_epoch) or (v.slashed and previous_epoch + 1 < v.withdrawable_epoch)
    ]
def get_attestation_component_deltas(state: BeaconState,
                                     attestations: Sequence[PendingAttestation]
                                     ) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Helper with shared logic for use by get source, target, and head deltas functions
    """
    rewards = [Gwei(0)] * len(state.validators)
    penalties = [Gwei(0)] * len(state.validators)
    total_balance = get_total_active_balance(state)
    unslashed_attesting_indices = get_unslashed_attesting_indices(state, attestations)
    attesting_balance = get_total_balance(state, unslashed_attesting_indices)
    for index in get_eligible_validator_indices(state):
        if index in unslashed_attesting_indices:
            increment = EFFECTIVE_BALANCE_INCREMENT  # Factored out from balance totals to avoid uint64 overflow
            if is_in_inactivity_leak(state):
                # Since full base reward will be canceled out by inactivity penalty deltas,
                # optimal participation receives full base reward compensation here.
                rewards[index] += get_base_reward(state, index)
            else:
                reward_numerator = get_base_reward(state, index) * (attesting_balance // increment)
                rewards[index] += reward_numerator // (total_balance // increment)
        else:
            penalties[index] += get_base_reward(state, index)
    return rewards, penalties
Components of attestation deltas
def get_source_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Return attester micro-rewards/penalties for source-vote for each validator.
    """
    matching_source_attestations = get_matching_source_attestations(state, get_previous_epoch(state))
    return get_attestation_component_deltas(state, matching_source_attestations)
def get_target_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Return attester micro-rewards/penalties for target-vote for each validator.
    """
    matching_target_attestations = get_matching_target_attestations(state, get_previous_epoch(state))
    return get_attestation_component_deltas(state, matching_target_attestations)
def get_head_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Return attester micro-rewards/penalties for head-vote for each validator.
    """
    matching_head_attestations = get_matching_head_attestations(state, get_previous_epoch(state))
    return get_attestation_component_deltas(state, matching_head_attestations)
def get_inclusion_delay_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Return proposer and inclusion delay micro-rewards/penalties for each validator.
    """
    rewards = [Gwei(0) for _ in range(len(state.validators))]
    matching_source_attestations = get_matching_source_attestations(state, get_previous_epoch(state))
    for index in get_unslashed_attesting_indices(state, matching_source_attestations):
        attestation = min([
            a for a in matching_source_attestations
            if index in get_attesting_indices(state, a.data, a.aggregation_bits)
        ], key=lambda a: a.inclusion_delay)
        rewards[attestation.proposer_index] += get_proposer_reward(state, index)
        max_attester_reward = Gwei(get_base_reward(state, index) - get_proposer_reward(state, index))
        rewards[index] += Gwei(max_attester_reward // attestation.inclusion_delay)

    # No penalties associated with inclusion delay
    penalties = [Gwei(0) for _ in range(len(state.validators))]
    return rewards, penalties
def get_inactivity_penalty_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Return inactivity reward/penalty deltas for each validator.
    """
    penalties = [Gwei(0) for _ in range(len(state.validators))]
    if is_in_inactivity_leak(state):
        matching_target_attestations = get_matching_target_attestations(state, get_previous_epoch(state))
        matching_target_attesting_indices = get_unslashed_attesting_indices(state, matching_target_attestations)
        for index in get_eligible_validator_indices(state):
            # If validator is performing optimally this cancels all rewards for a neutral balance
            base_reward = get_base_reward(state, index)
            penalties[index] += Gwei(BASE_REWARDS_PER_EPOCH * base_reward - get_proposer_reward(state, index))
            if index not in matching_target_attesting_indices:
                effective_balance = state.validators[index].effective_balance
                penalties[index] += Gwei(effective_balance * get_finality_delay(state) // INACTIVITY_PENALTY_QUOTIENT)

    # No rewards associated with inactivity penalties
    rewards = [Gwei(0) for _ in range(len(state.validators))]
    return rewards, penalties
get_attestation_deltas
def get_attestation_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
    """
    Return attestation reward/penalty deltas for each validator.
    """
    source_rewards, source_penalties = get_source_deltas(state)
    target_rewards, target_penalties = get_target_deltas(state)
    head_rewards, head_penalties = get_head_deltas(state)
    inclusion_delay_rewards, _ = get_inclusion_delay_deltas(state)
    _, inactivity_penalties = get_inactivity_penalty_deltas(state)

    rewards = [
        source_rewards[i] + target_rewards[i] + head_rewards[i] + inclusion_delay_rewards[i]
        for i in range(len(state.validators))
    ]

    penalties = [
        source_penalties[i] + target_penalties[i] + head_penalties[i] + inactivity_penalties[i]
        for i in range(len(state.validators))
    ]

    return rewards, penalties
process_rewards_and_penalties
def process_rewards_and_penalties(state: BeaconState) -> None:
    # No rewards are applied at the end of `GENESIS_EPOCH` because rewards are for work done in the previous epoch
    if get_current_epoch(state) == GENESIS_EPOCH:
        return

    rewards, penalties = get_attestation_deltas(state)
    for index in range(len(state.validators)):
        increase_balance(state, ValidatorIndex(index), rewards[index])
        decrease_balance(state, ValidatorIndex(index), penalties[index])

Registry updates

def process_registry_updates(state: BeaconState) -> None:
    # Process activation eligibility and ejections
    for index, validator in enumerate(state.validators):
        if is_eligible_for_activation_queue(validator):
            validator.activation_eligibility_epoch = get_current_epoch(state) + 1

        if is_active_validator(validator, get_current_epoch(state)) and validator.effective_balance <= EJECTION_BALANCE:
            initiate_validator_exit(state, ValidatorIndex(index))

    # Queue validators eligible for activation and not yet dequeued for activation
    activation_queue = sorted([
        index for index, validator in enumerate(state.validators)
        if is_eligible_for_activation(state, validator)
        # Order by the sequence of activation_eligibility_epoch setting and then index
    ], key=lambda index: (state.validators[index].activation_eligibility_epoch, index))
    # Dequeued validators for activation up to churn limit
    for index in activation_queue[:get_validator_churn_limit(state)]:
        validator = state.validators[index]
        validator.activation_epoch = compute_activation_exit_epoch(get_current_epoch(state))

Slashings

def process_slashings(state: BeaconState) -> None:
    epoch = get_current_epoch(state)
    total_balance = get_total_active_balance(state)
    adjusted_total_slashing_balance = min(sum(state.slashings) * PROPORTIONAL_SLASHING_MULTIPLIER, total_balance)
    for index, validator in enumerate(state.validators):
        if validator.slashed and epoch + EPOCHS_PER_SLASHINGS_VECTOR // 2 == validator.withdrawable_epoch:
            increment = EFFECTIVE_BALANCE_INCREMENT  # Factored out from penalty numerator to avoid uint64 overflow
            penalty_numerator = validator.effective_balance // increment * adjusted_total_slashing_balance
            penalty = penalty_numerator // total_balance * increment
            decrease_balance(state, ValidatorIndex(index), penalty)

Final updates

def process_final_updates(state: BeaconState) -> None:
    current_epoch = get_current_epoch(state)
    next_epoch = Epoch(current_epoch + 1)
    # Reset eth1 data votes
    if next_epoch % EPOCHS_PER_ETH1_VOTING_PERIOD == 0:
        state.eth1_data_votes = []
    # Update effective balances with hysteresis
    for index, validator in enumerate(state.validators):
        balance = state.balances[index]
        HYSTERESIS_INCREMENT = uint64(EFFECTIVE_BALANCE_INCREMENT // HYSTERESIS_QUOTIENT)
        DOWNWARD_THRESHOLD = HYSTERESIS_INCREMENT * HYSTERESIS_DOWNWARD_MULTIPLIER
        UPWARD_THRESHOLD = HYSTERESIS_INCREMENT * HYSTERESIS_UPWARD_MULTIPLIER
        if (
            balance + DOWNWARD_THRESHOLD < validator.effective_balance
            or validator.effective_balance + UPWARD_THRESHOLD < balance
        ):
            validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
    # Reset slashings
    state.slashings[next_epoch % EPOCHS_PER_SLASHINGS_VECTOR] = Gwei(0)
    # Set randao mix
    state.randao_mixes[next_epoch % EPOCHS_PER_HISTORICAL_VECTOR] = get_randao_mix(state, current_epoch)
    # Set historical root accumulator
    if next_epoch % (SLOTS_PER_HISTORICAL_ROOT // SLOTS_PER_EPOCH) == 0:
        historical_batch = HistoricalBatch(block_roots=state.block_roots, state_roots=state.state_roots)
        state.historical_roots.append(hash_tree_root(historical_batch))
    # Rotate current/previous epoch attestations
    state.previous_epoch_attestations = state.current_epoch_attestations
    state.current_epoch_attestations = []

Block processing

def process_block(state: BeaconState, block: BeaconBlock) -> None:
    process_block_header(state, block)
    process_randao(state, block.body)
    process_eth1_data(state, block.body)
    process_operations(state, block.body)

Block header

def process_block_header(state: BeaconState, block: BeaconBlock) -> None:
    # Verify that the slots match
    assert block.slot == state.slot
    # Verify that the block is newer than latest block header
    assert block.slot > state.latest_block_header.slot
    # Verify that proposer index is the correct index
    assert block.proposer_index == get_beacon_proposer_index(state)
    # Verify that the parent matches
    assert block.parent_root == hash_tree_root(state.latest_block_header)
    # Cache current block as the new latest block
    state.latest_block_header = BeaconBlockHeader(
        slot=block.slot,
        proposer_index=block.proposer_index,
        parent_root=block.parent_root,
        state_root=Bytes32(),  # Overwritten in the next process_slot call
        body_root=hash_tree_root(block.body),
    )

    # Verify proposer is not slashed
    proposer = state.validators[block.proposer_index]
    assert not proposer.slashed

RANDAO

def process_randao(state: BeaconState, body: BeaconBlockBody) -> None:
    epoch = get_current_epoch(state)
    # Verify RANDAO reveal
    proposer = state.validators[get_beacon_proposer_index(state)]
    signing_root = compute_signing_root(epoch, get_domain(state, DOMAIN_RANDAO))
    assert bls.Verify(proposer.pubkey, signing_root, body.randao_reveal)
    # Mix in RANDAO reveal
    mix = xor(get_randao_mix(state, epoch), hash(body.randao_reveal))
    state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR] = mix

Eth1 data

def process_eth1_data(state: BeaconState, body: BeaconBlockBody) -> None:
    state.eth1_data_votes.append(body.eth1_data)
    if state.eth1_data_votes.count(body.eth1_data) * 2 > EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH:
        state.eth1_data = body.eth1_data

Operations

def process_operations(state: BeaconState, body: BeaconBlockBody) -> None:
    # Verify that outstanding deposits are processed up to the maximum number of deposits
    assert len(body.deposits) == min(MAX_DEPOSITS, state.eth1_data.deposit_count - state.eth1_deposit_index)

    def for_ops(operations: Sequence[Any], fn: Callable[[BeaconState, Any], None]) -> None:
        for operation in operations:
            fn(state, operation)

    for_ops(body.proposer_slashings, process_proposer_slashing)
    for_ops(body.attester_slashings, process_attester_slashing)
    for_ops(body.attestations, process_attestation)
    for_ops(body.deposits, process_deposit)
    for_ops(body.voluntary_exits, process_voluntary_exit)
Proposer slashings
def process_proposer_slashing(state: BeaconState, proposer_slashing: ProposerSlashing) -> None:
    header_1 = proposer_slashing.signed_header_1.message
    header_2 = proposer_slashing.signed_header_2.message

    # Verify header slots match
    assert header_1.slot == header_2.slot
    # Verify header proposer indices match
    assert header_1.proposer_index == header_2.proposer_index
    # Verify the headers are different
    assert header_1 != header_2
    # Verify the proposer is slashable
    proposer = state.validators[header_1.proposer_index]
    assert is_slashable_validator(proposer, get_current_epoch(state))
    # Verify signatures
    for signed_header in (proposer_slashing.signed_header_1, proposer_slashing.signed_header_2):
        domain = get_domain(state, DOMAIN_BEACON_PROPOSER, compute_epoch_at_slot(signed_header.message.slot))
        signing_root = compute_signing_root(signed_header.message, domain)
        assert bls.Verify(proposer.pubkey, signing_root, signed_header.signature)

    slash_validator(state, header_1.proposer_index)
Attester slashings
def process_attester_slashing(state: BeaconState, attester_slashing: AttesterSlashing) -> None:
    attestation_1 = attester_slashing.attestation_1
    attestation_2 = attester_slashing.attestation_2
    assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
    assert is_valid_indexed_attestation(state, attestation_1)
    assert is_valid_indexed_attestation(state, attestation_2)

    slashed_any = False
    indices = set(attestation_1.attesting_indices).intersection(attestation_2.attesting_indices)
    for index in sorted(indices):
        if is_slashable_validator(state.validators[index], get_current_epoch(state)):
            slash_validator(state, index)
            slashed_any = True
    assert slashed_any
Attestations
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
    data = attestation.data
    assert data.target.epoch in (get_previous_epoch(state), get_current_epoch(state))
    assert data.target.epoch == compute_epoch_at_slot(data.slot)
    assert data.slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot <= data.slot + SLOTS_PER_EPOCH
    assert data.index < get_committee_count_per_slot(state, data.target.epoch)

    committee = get_beacon_committee(state, data.slot, data.index)
    assert len(attestation.aggregation_bits) == len(committee)

    pending_attestation = PendingAttestation(
        data=data,
        aggregation_bits=attestation.aggregation_bits,
        inclusion_delay=state.slot - data.slot,
        proposer_index=get_beacon_proposer_index(state),
    )

    if data.target.epoch == get_current_epoch(state):
        assert data.source == state.current_justified_checkpoint
        state.current_epoch_attestations.append(pending_attestation)
    else:
        assert data.source == state.previous_justified_checkpoint
        state.previous_epoch_attestations.append(pending_attestation)

    # Verify signature
    assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
Deposits
def get_validator_from_deposit(state: BeaconState, deposit: Deposit) -> Validator:
    amount = deposit.data.amount
    effective_balance = min(amount - amount % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)

    return Validator(
        pubkey=deposit.data.pubkey,
        withdrawal_credentials=deposit.data.withdrawal_credentials,
        activation_eligibility_epoch=FAR_FUTURE_EPOCH,
        activation_epoch=FAR_FUTURE_EPOCH,
        exit_epoch=FAR_FUTURE_EPOCH,
        withdrawable_epoch=FAR_FUTURE_EPOCH,
        effective_balance=effective_balance,
    )
def process_deposit(state: BeaconState, deposit: Deposit) -> None:
    # Verify the Merkle branch
    assert is_valid_merkle_branch(
        leaf=hash_tree_root(deposit.data),
        branch=deposit.proof,
        depth=DEPOSIT_CONTRACT_TREE_DEPTH + 1,  # Add 1 for the List length mix-in
        index=state.eth1_deposit_index,
        root=state.eth1_data.deposit_root,
    )

    # Deposits must be processed in order
    state.eth1_deposit_index += 1

    pubkey = deposit.data.pubkey
    amount = deposit.data.amount
    validator_pubkeys = [v.pubkey for v in state.validators]
    if pubkey not in validator_pubkeys:
        # Verify the deposit signature (proof of possession) which is not checked by the deposit contract
        deposit_message = DepositMessage(
            pubkey=deposit.data.pubkey,
            withdrawal_credentials=deposit.data.withdrawal_credentials,
            amount=deposit.data.amount,
        )
        domain = compute_domain(DOMAIN_DEPOSIT)  # Fork-agnostic domain since deposits are valid across forks
        signing_root = compute_signing_root(deposit_message, domain)
        if not bls.Verify(pubkey, signing_root, deposit.data.signature):
            return

        # Add validator and balance entries
        state.validators.append(get_validator_from_deposit(state, deposit))
        state.balances.append(amount)
    else:
        # Increase balance by deposit amount
        index = ValidatorIndex(validator_pubkeys.index(pubkey))
        increase_balance(state, index, amount)
Voluntary exits
def process_voluntary_exit(state: BeaconState, signed_voluntary_exit: SignedVoluntaryExit) -> None:
    voluntary_exit = signed_voluntary_exit.message
    validator = state.validators[voluntary_exit.validator_index]
    # Verify the validator is active
    assert is_active_validator(validator, get_current_epoch(state))
    # Verify exit has not been initiated
    assert validator.exit_epoch == FAR_FUTURE_EPOCH
    # Exits must specify an epoch when they become valid; they are not valid before then
    assert get_current_epoch(state) >= voluntary_exit.epoch
    # Verify the validator has been active long enough
    assert get_current_epoch(state) >= validator.activation_epoch + SHARD_COMMITTEE_PERIOD
    # Verify signature
    domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, voluntary_exit.epoch)
    signing_root = compute_signing_root(voluntary_exit, domain)
    assert bls.Verify(validator.pubkey, signing_root, signed_voluntary_exit.signature)
    # Initiate exit
    initiate_validator_exit(state, voluntary_exit.validator_index)