3.3 KiB
BLS Verification
Warning: This document is pending academic review and should not yet be considered secure.
See https://z.cash/blog/new-snark-curve/ for BLS-12-381 parameters.
We represent coordinates as defined in https://github.com/zkcrypto/pairing/tree/master/src/bls12_381/.
Specifically, a point in G1 as a 384-bit integer z
, which we decompose into:
x = z % 2**381
highflag = z // 2**382
lowflag = (z % 2**382) // 2**381
If highflag == 3
, the point is the point at infinity and we require lowflag = x = 0
. Otherwise, we require highflag == 2
, in which case the point is (x, y)
where y
is the valid coordinate such that (y * 2) // q == lowflag
.
We represent a point in G2 as a pair of 384-bit integers (z1, z2)
that are each decomposed into x1
, highflag1
, lowflag1
, x2
, highflag2
, lowflag2
as above. We require lowflag2 == highflag2 == 0
. If highflag1 == 3
, the point is the point at infinity and we require lowflag1 == x1 == x2 == 0
. Otherwise, we require highflag == 2
, in which case the point is (x1 * i + x2, y)
where y
is the valid coordinate such that the imaginary part of y
satisfies (y_im * 2) // q == lowflag1
.
BLSVerify(pubkey: uint384, msg: bytes32, sig: [uint384], domain: uint64)
is done as follows:
- Verify that
pubkey
is a valid G1 point andsig
is a valid G2 point. - Convert
msg
to a G2 point usinghash_to_G2
defined below. - Do the pairing check: verify
e(pubkey, hash_to_G2(msg, domain)) == e(G1, sig)
(wheree
is the BLS pairing function)
Here is the hash_to_G2
definition:
G2_cofactor = 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109
field_modulus = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787
def hash_to_G2(m, domain):
x1 = hash(bytes8(domain) + b'\x01' + m)
x2 = hash(bytes8(domain) + b'\x02' + m)
x_coord = FQ2([x1, x2]) # x1 + x2 * i
while 1:
x_cubed_plus_b2 = x_coord ** 3 + FQ2([4,4])
y_coord = mod_sqrt(x_cubed_plus_b2)
if y_coord is not None:
break
x_coord += FQ2([1, 0]) # Add one until we get a quadratic residue
assert is_on_curve((x_coord, y_coord))
return multiply((x_coord, y_coord), G2_cofactor)
Here is a sample implementation of mod_sqrt
:
qmod = field_modulus ** 2 - 1
eighth_roots_of_unity = [FQ2([1,1]) ** ((qmod * k) // 8) for k in range(8)]
def mod_sqrt(val):
candidate_sqrt = val ** ((qmod + 8) // 16)
check = candidate_sqrt ** 2 / val
if check in eighth_roots_of_unity[::2]:
return candidate_sqrt / eighth_roots_of_unity[eighth_roots_of_unity.index(check) // 2]
return None
BLSMultiVerify(pubkeys: [uint384], msgs: [bytes32], sig: [uint384], domain: uint64)
is done as follows:
- Verify that each element of
pubkeys
is a valid G1 point andsig
is a valid G2 point. - Convert each element of
msg
to a G2 point usinghash_to_G2
defined above, using the specifieddomain
. - Check that the length of
pubkeys
andmsgs
is the same, call the lengthL
- Do the pairing check: verify
e(pubkeys[0], hash_to_G2(msgs[0], domain)) * ... * e(pubkeys[L-1], hash_to_G2(msgs[L-1], domain)) == e(G1, sig)