eth2.0-specs/specs/eip4844/validator.md

237 lines
8.7 KiB
Markdown

# EIP-4844 -- Honest Validator
**Notice**: This document is a work-in-progress for researchers and implementers.
## Table of contents
<!-- TOC -->
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Introduction](#introduction)
- [Prerequisites](#prerequisites)
- [Helpers](#helpers)
- [`is_data_available`](#is_data_available)
- [`hash_to_bls_field`](#hash_to_bls_field)
- [`compute_powers`](#compute_powers)
- [`vector_lincomb`](#vector_lincomb)
- [`verify_blobs_sidecar`](#verify_blobs_sidecar)
- [Beacon chain responsibilities](#beacon-chain-responsibilities)
- [Block proposal](#block-proposal)
- [Constructing the `BeaconBlockBody`](#constructing-the-beaconblockbody)
- [Blob commitments](#blob-commitments)
- [Beacon Block publishing time](#beacon-block-publishing-time)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
<!-- /TOC -->
## Introduction
This document represents the changes to be made in the code of an "honest validator" to implement EIP-4844.
## Prerequisites
This document is an extension of the [Bellatrix -- Honest Validator](../bellatrix/validator.md) guide.
All behaviors and definitions defined in this document, and documents it extends, carry over unless explicitly noted or overridden.
All terminology, constants, functions, and protocol mechanics defined in the updated [Beacon Chain doc of EIP4844](./beacon-chain.md) are requisite for this document and used throughout.
Please see related Beacon Chain doc before continuing and use them as a reference throughout.
## Custom types
| Name | SSZ equivalent | Description |
| - | - | - |
| `Polynomial` | `List[BLSFieldElement, MAX_BLOBS_PER_BLOCK]` | a polynomial in evaluation form |
## Containers
### `BlobsAndCommmitments`
```python
class BlobsAndCommmitments(Container):
blobs: List[Blob, MAX_BLOBS_PER_BLOCK]
kzg_commitments: List[KZGCommitment, MAX_BLOBS_PER_BLOCK]
```
### `PolynomialAndCommitment`
```python
class PolynomialAndCommitment(Container):
polynomial: Polynomial
kzg_commitment: KZGCommitment
```
## Helpers
### `is_data_available`
The implementation of `is_data_available` is meant to change with later sharding upgrades.
Initially, it requires every verifying actor to retrieve the matching `BlobsSidecar`,
and verify the sidecar with `verify_blobs_sidecar`.
Without the sidecar the block may be processed further optimistically,
but MUST NOT be considered valid until a valid `BlobsSidecar` has been downloaded.
```python
def is_data_available(slot: Slot, beacon_block_root: Root, kzgs: Sequence[KZGCommitment]):
sidecar = retrieve_blobs_sidecar(slot, beacon_block_root) # implementation dependent, raises an exception if not available
verify_blobs_sidecar(slot, beacon_block_root, kzgs, sidecar)
```
### `hash_to_bls_field`
```python
def hash_to_bls_field(x: Container) -> BLSFieldElement:
"""
This function is used to generate Fiat-Shamir challenges. The output is not uniform over the BLS field.
"""
return int.from_bytes(hash_tree_root(x), "little") % BLS_MODULUS
```
### `compute_powers`
```python
def compute_powers(x: BLSFieldElement, n: uint64) -> Sequence[BLSFieldElement]:
"""
Return ``x`` to power of [0, n-1].
"""
current_power = 1
powers = []
for _ in range(n):
powers.append(BLSFieldElement(current_power))
current_power = current_power * int(x) % BLS_MODULUS
return powers
```
### `compute_aggregated_poly_and_commitment`
```python
def compute_aggregated_poly_and_commitment(
blobs: Sequence[BLSFieldElement],
kzg_commitments: Sequence[KZGCommitment]) -> Tuple[Polynomial, KZGCommitment]:
"""
Return the aggregated polynomial and aggregated KZG commitment.
"""
# Generate random linear combination challenges
r = hash_to_bls_field(BlobsAndCommmitments(blobs=blobs, kzg_commitments=kzg_commitments))
r_powers = compute_powers(r, len(kzg_commitments))
# Create aggregated polynomial in evaluation form
aggregated_poly = Polynomial(matrix_lincomb(blobs, r_powers))
# Compute commitment to aggregated polynomial
aggregated_poly_commitment = KZGCommitment(lincomb(kzg_commitments, r_powers))
return aggregated_poly, aggregated_poly_commitment
```
### `verify_blobs_sidecar`
```python
def verify_blobs_sidecar(slot: Slot, beacon_block_root: Root,
expected_kzg_commitments: Sequence[KZGCommitment], blobs_sidecar: BlobsSidecar) -> bool:
assert slot == blobs_sidecar.beacon_block_slot
assert beacon_block_root == blobs_sidecar.beacon_block_root
blobs = blobs_sidecar.blobs
kzg_aggregated_proof = blobs_sidecar.kzg_aggregated_proof
assert len(expected_kzg_commitments) == len(blobs)
aggregated_poly, aggregated_poly_commitment = compute_aggregated_poly_and_commitment(
blobs,
expected_kzg_commitments,
)
# Generate challenge `x` and evaluate the aggregated polynomial at `x`
x = hash_to_bls_field(
PolynomialAndCommitment(polynomial=aggregated_poly, kzg_commitment=aggregated_poly_commitment)
)
# Evaluate aggregated polynomial at `x` (evaluation function checks for div-by-zero)
y = evaluate_polynomial_in_evaluation_form(aggregated_poly, x)
# Verify aggregated proof
return verify_kzg_proof(aggregated_poly_commitment, x, y, kzg_aggregated_proof)
```
### `compute_proof_from_blobs`
```python
def compute_proof_from_blobs(blobs: Sequence[BLSFieldElement]) -> KZGProof:
commitments = [blob_to_kzg_commitment(blob) for blob in blobs]
aggregated_poly, aggregated_poly_commitment = compute_aggregated_poly_and_commitment(blobs, commitments)
x = hash_to_bls_field(PolynomialAndCommitment(
polynomial=aggregated_poly,
kzg_commitment=aggregated_poly_commitment,
))
return compute_kzg_proof(aggregated_poly, x)
```
## Beacon chain responsibilities
All validator responsibilities remain unchanged other than those noted below.
Namely, the blob handling and the addition of `BlobsSidecar`.
### Block proposal
#### Constructing the `BeaconBlockBody`
##### Blob KZG commitments
After retrieving the execution payload from the execution engine as specified in Bellatrix,
the blobs are retrieved and processed:
```
# execution_payload = execution_engine.get_payload(payload_id)
# block.body.execution_payload = execution_payload
# ...
blobs, blob_kzg_commitments = get_blobs(payload_id)
# Optionally sanity-check that the KZG commitments match the versioned hashes in the transactions
assert verify_kzg_commitments_against_transactions(execution_payload.transactions, blob_kzg_commitments)
# Optionally sanity-check that the KZG commitments match the blobs (as produced by the execution engine)
assert len(blob_kzg_commitments) == len(blobs)
assert [blob_to_kzg_commitment(blob) == commitment for blob, commitment in zip(blobs, blob_kzg_commitments)]
# Update the block body
block.body.blob_kzg_commitments = blob_kzg_commitments
```
The `blobs` should be held with the block in preparation of publishing.
Without the `blobs`, the published block will effectively be ignored by honest validators.
Note: This API is *unstable*. `get_blobs` and `get_payload` may be unified.
Implementers may also retrieve blobs individually per transaction.
### Beacon Block publishing time
Before publishing a prepared beacon block proposal, the corresponding blobs are packaged into a sidecar object for distribution to the network:
```python
def get_blobs_sidecar(block: BeaconBlock, blobs: Sequence[Blob]) -> BlobsSidecar:
return BlobsSidecar(
beacon_block_root=hash_tree_root(block),
beacon_block_slot=block.slot,
blobs=blobs,
kzg_aggregated_proof=compute_proof_from_blobs(blobs),
)
```
And then signed:
```python
def get_signed_blobs_sidecar(state: BeaconState, blobs_sidecar: BlobsSidecar, privkey: int) -> SignedBlobsSidecar:
domain = get_domain(state, DOMAIN_BLOBS_SIDECAR, blobs_sidecar.beacon_block_slot // SLOTS_PER_EPOCH)
signing_root = compute_signing_root(blobs_sidecar, domain)
signature = bls.Sign(privkey, signing_root)
return SignedBlobsSidecar(message=blobs_sidecar, signature=signature)
```
This `signed_blobs_sidecar` is then published to the global `blobs_sidecar` topic as soon as the `beacon_block` is published.
After publishing the sidecar peers on the network may request the sidecar through sync-requests, or a local user may be interested.
The validator MUST hold on to blobs for `MIN_EPOCHS_FOR_BLOBS_SIDECARS_REQUESTS` epochs and serve when capable,
to ensure the data-availability of these blobs throughout the network.
After `MIN_EPOCHS_FOR_BLOBS_SIDECARS_REQUESTS` nodes MAY prune the blobs and/or stop serving them.