6.6 KiB
6.6 KiB
EIP-4844 -- Polynomial Commitments
Table of contents
Introduction
This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the EIP-4844 specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations.
Custom types
Name | SSZ equivalent | Description |
---|---|---|
G1Point |
Bytes48 |
|
G2Point |
Bytes96 |
|
BLSFieldElement |
uint256 |
x < BLS_MODULUS |
KZGCommitment |
Bytes48 |
Same as BLS standard "is valid pubkey" check but also allows 0x00..00 for point-at-infinity |
KZGProof |
Bytes48 |
Same as for KZGCommitment |
Constants
Name | Value | Notes |
---|---|---|
BLS_MODULUS |
52435875175126190479447740508185965837690552500527637822603658699938581184513 |
Scalar field modulus of BLS12-381 |
ROOTS_OF_UNITY |
Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB] |
Roots of unity of order FIELD_ELEMENTS_PER_BLOB over the BLS12-381 field |
Preset
Trusted setup
The trusted setup is part of the preset: during testing a minimal
insecure variant may be used,
but reusing the mainnet
settings in public networks is a critical security requirement.
Name | Value |
---|---|
KZG_SETUP_G1 |
Vector[G1Point, FIELD_ELEMENTS_PER_BLOB] , contents TBD |
KZG_SETUP_G2 |
Vector[G2Point, FIELD_ELEMENTS_PER_BLOB] , contents TBD |
KZG_SETUP_LAGRANGE |
Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB] , contents TBD |
Helper functions
BLS12-381 helpers
bls_modular_inverse
def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
"""
Compute the modular inverse of x
i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0
"""
return pow(x, -1, BLS_MODULUS) if x != 0 else 0
div
def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement:
"""Divide two field elements: `x` by `y`"""
return (int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS
lincomb
def lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment:
"""
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
"""
assert len(points) == len(scalars)
result = bls.Z1
for x, a in zip(points, scalars):
result = bls.add(result, bls.multiply(bls.bytes48_to_G1(x), a))
return KZGCommitment(bls.G1_to_bytes48(result))
matrix_lincomb
def matrix_lincomb(vectors: Sequence[Sequence[BLSFieldElement]],
scalars: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]:
"""
Given a list of ``vectors``, interpret it as a 2D matrix and compute the linear combination
of each column with `scalars`: return the resulting vector.
"""
result = [0] * len(vectors[0])
for v, s in zip(vectors, scalars):
for i, x in enumerate(v):
result[i] = (result[i] + int(s) * int(x)) % BLS_MODULUS
return [BLSFieldElement(x) for x in result]
KZG
KZG core functions. These are also defined in EIP-4844 execution specs.
blob_to_kzg_commitment
def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
return lincomb(KZG_SETUP_LAGRANGE, blob)
verify_kzg_proof
def verify_kzg_proof(polynomial_kzg: KZGCommitment,
z: BLSFieldElement,
y: BLSFieldElement,
kzg_proof: KZGProof) -> bool:
"""
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
"""
# Verify: P - y = Q * (X - z)
X_minus_z = bls.add(bls.bytes96_to_G2(KZG_SETUP_G2[1]), bls.multiply(bls.G2, BLS_MODULUS - z))
P_minus_y = bls.add(bls.bytes48_to_G1(polynomial_kzg), bls.multiply(bls.G1, BLS_MODULUS - y))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2)],
[bls.bytes48_to_G1(kzg_proof), X_minus_z]
])
compute_kzg_proof
def compute_kzg_proof(polynomial: Sequence[BLSFieldElement], z: BLSFieldElement) -> KZGProof:
"""Compute KZG proof at point `z` with `polynomial` being in evaluation form"""
# To avoid SSZ overflow/underflow, convert element into int
polynomial = [int(i) for i in polynomial]
z = int(z)
# Shift our polynomial first (in evaluation form we can't handle the division remainder)
y = evaluate_polynomial_in_evaluation_form(polynomial, z)
polynomial_shifted = [(p - int(y)) % BLS_MODULUS for p in polynomial]
# Make sure we won't divide by zero during division
assert z not in ROOTS_OF_UNITY
denominator_poly = [(x - z) % BLS_MODULUS for x in ROOTS_OF_UNITY]
# Calculate quotient polynomial by doing point-by-point division
quotient_polynomial = [div(a, b) for a, b in zip(polynomial_shifted, denominator_poly)]
return KZGProof(lincomb(KZG_SETUP_LAGRANGE, quotient_polynomial))
Polynomials
evaluate_polynomial_in_evaluation_form
def evaluate_polynomial_in_evaluation_form(polynomial: Sequence[BLSFieldElement],
z: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point `z`
Uses the barycentric formula:
f(z) = (1 - z**WIDTH) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i])
"""
width = len(polynomial)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = bls_modular_inverse(width)
# Make sure we won't divide by zero during division
assert z not in ROOTS_OF_UNITY
result = 0
for i in range(width):
result += div(int(polynomial[i]) * int(ROOTS_OF_UNITY[i]), (z - ROOTS_OF_UNITY[i]))
result = result * (pow(z, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS
return result