68 KiB
Ethereum 2.0 Phase 0 -- The Beacon Chain
NOTICE: This document is a work-in-progress for researchers and implementers. It reflects recent spec changes and takes precedence over the Python proof-of-concept implementation [python-poc].
Table of contents
- Ethereum 2.0 Phase 0 -- The Beacon Chain
- Table of contents
- Introduction
- Notation
- Terminology
- Constants
- Ethereum 1.0 chain deposit contract
- Data structures
- Beacon chain processing
- Beacon chain state transition function
- Per-block processing
- Epoch boundary processing
- Appendix
- References
- Copyright
Introduction
This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.
At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0 the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when deposit transaction receipts are processed by the beacon chain, the activation balance is reached, and after a queuing process. Exit is either voluntary or done forcibly as a penalty for misbehavior.
The primary source of load on the beacon chain is "attestations". Attestations are availability votes for a shard block, and simultaneously proof of stake votes for a beacon chain block. A sufficient number of attestations for the same shard block create a "crosslink", confirming the shard segment up to that shard block into the beacon chain. Crosslinks also serve as infrastructure for asynchronous cross-shard communication.
Notation
Unless otherwise indicated, code appearing in this style
is to be interpreted as an algorithm defined in Python. Implementations may implement such algorithms using any code and programming language desired as long as the behavior is identical to that of the algorithm provided.
Terminology
- Validator - a participant in the Casper/sharding consensus system. You can become one by depositing 32 ETH into the Casper mechanism.
- Active validator - a validator currently participating in the protocol which the Casper mechanism looks to produce and attest to blocks, crosslinks and other consensus objects.
- Committee - a (pseudo-) randomly sampled subset of active validators. When a committee is referred to collectively, as in "this committee attests to X", this is assumed to mean "some subset of that committee that contains enough validators that the protocol recognizes it as representing the committee".
- Proposer - the validator that creates a beacon chain block
- Attester - a validator that is part of a committee that needs to sign off on a beacon chain block while simultaneously creating a link (crosslink) to a recent shard block on a particular shard chain.
- Beacon chain - the central PoS chain that is the base of the sharding system.
- Shard chain - one of the chains on which user transactions take place and account data is stored.
- Crosslink - a set of signatures from a committee attesting to a block in a shard chain, which can be included into the beacon chain. Crosslinks are the main means by which the beacon chain "learns about" the updated state of shard chains.
- Slot - a period of
SLOT_DURATION
seconds, during which one proposer has the ability to create a beacon chain block and some attesters have the ability to make attestations - Epoch - an aligned span of slots during which all validators get exactly one chance to make an attestation
- Finalized, justified - see Casper FFG finalization here: https://arxiv.org/abs/1710.09437
- Withdrawal period - the number of slots between a validator exit and the validator balance being withdrawable
- Genesis time - the Unix time of the genesis beacon chain block at slot 0
Constants
Name | Value | Unit |
---|---|---|
SHARD_COUNT |
2**10 (= 1,024) |
shards |
TARGET_COMMITTEE_SIZE |
2**8 (= 256) |
validators |
MAX_ATTESTATIONS_PER_BLOCK |
2**7 (= 128) |
attestations |
MAX_DEPOSIT |
2**5 (= 32) |
ETH |
MIN_BALANCE |
2**4 (= 16) |
ETH |
POW_CONTRACT_MERKLE_TREE_DEPTH |
2**5 (= 32) |
- |
INITIAL_FORK_VERSION |
0 |
- |
INITIAL_SLOT_NUMBER |
0 |
- |
DEPOSIT_CONTRACT_ADDRESS |
TBD | - |
GWEI_PER_ETH |
10**9 |
Gwei/ETH |
ZERO_HASH |
bytes([0] * 32) |
- |
BEACON_CHAIN_SHARD_NUMBER |
2**64 - 1 |
- |
Time constants
Name | Value | Unit | Duration |
---|---|---|---|
SLOT_DURATION |
6 |
seconds | 6 seconds |
MIN_ATTESTATION_INCLUSION_DELAY |
2**2 (= 4) |
slots | 24 seconds |
EPOCH_LENGTH |
2**6 (= 64) |
slots | 6.4 minutes |
MIN_VALIDATOR_REGISTRY_CHANGE_INTERVAL |
2**8 (= 256) |
slots | 25.6 minutes |
POW_RECEIPT_ROOT_VOTING_PERIOD |
2**10 (= 1,024) |
slots | ~1.7 hours |
SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD |
2**17 (= 131,072) |
slots | ~9 days |
SQRT_E_DROP_TIME |
2**17 (= 131,072) |
slots | ~9 days |
COLLECTIVE_PENALTY_CALCULATION_PERIOD |
2**20 (= 1,048,576) |
slots | ~73 days |
DELETION_PERIOD |
2**22 (= 16,777,216) |
slots | ~290 days |
Quotients
Name | Value |
---|---|
BASE_REWARD_QUOTIENT |
2**11 (= 2,048) |
WHISTLEBLOWER_REWARD_QUOTIENT |
2**9 (= 512) |
INCLUDER_REWARD_QUOTIENT |
2**3 (= 8) |
MAX_CHURN_QUOTIENT |
2**5 (= 32) |
Validator status codes
Name | Value |
---|---|
PENDING_ACTIVATION |
0 |
ACTIVE |
1 |
EXITED_WITHOUT_PENALTY |
2 |
EXITED_WITH_PENALTY |
3 |
Special record types
Name | Value | Maximum count |
---|---|---|
VOLUNTARY_EXIT |
0 |
16 |
CASPER_SLASHING |
1 |
16 |
PROPOSER_SLASHING |
2 |
16 |
DEPOSIT_PROOF |
3 |
16 |
Validator registry delta flags
Name | Value |
---|---|
ACTIVATION |
0 |
EXIT |
1 |
Domains for BLS signatures
Name | Value |
---|---|
DOMAIN_DEPOSIT |
0 |
DOMAIN_ATTESTATION |
1 |
DOMAIN_PROPOSAL |
2 |
DOMAIN_EXIT |
3 |
Notes
- See a recommended min committee size of 111 here; the shuffling algorithm will generally ensure the committee size is at least half the target.
- The
SQRT_E_DROP_TIME
constant is the amount of time it takes for the inactivity leak to cut deposits of non-participating validators by ~39.4%. - The
BASE_REWARD_QUOTIENT
constant dictates the per-epoch interest rate assuming all validators are participating, assuming total deposits of 1 ETH. It corresponds to ~2.57% annual interest assuming 10 million participating ETH. - At most
1/MAX_CHURN_QUOTIENT
of the validators can change during each validator registry change.
Ethereum 1.0 chain deposit contract
The initial deployment phases of Ethereum 2.0 are implemented without consensus changes to Ethereum 1.0. A deposit contract is added to Ethereum 1.0 to deposit ETH. This contract has a deposit
function which takes as arguments pubkey
, withdrawal_credentials
, randao_commitment
as defined in a ValidatorRecord
below. A BLS proof_of_possession
of types bytes
is given as a final argument.
The deposit contract emits a log with the various arguments for consumption by the beacon chain. It does little validation, pushing the deposit logic to the beacon chain. In particular, the proof of possession (based on the BLS12-381 curve) is not verified by the deposit contract.
Contract code in Vyper
The beacon chain is initialized when a condition is met inside the deposit contract on the existing Ethereum 1.0 chain. This contract's code in Vyper is as follows:
MIN_DEPOSIT: constant(uint256) = 1 # ETH
MAX_DEPOSIT: constant(uint256) = 32 # ETH
GWEI_PER_ETH: constant(uint256) = 1000000000 # 10**9
CHAIN_START_FULL_DEPOSIT_THRESHOLD: constant(uint256) = 16384 # 2**14
POW_CONTRACT_MERKLE_TREE_DEPTH: constant(uint256) = 32
SECONDS_PER_DAY: constant(uint256) = 86400
HashChainValue: event({previous_receipt_root: bytes32, data: bytes[2064], full_deposit_count: uint256})
ChainStart: event({receipt_root: bytes32, time: bytes[8]})
receipt_tree: bytes32[uint256]
full_deposit_count: uint256
@payable
@public
def deposit(deposit_parameters: bytes[2048]):
index: uint256 = self.full_deposit_count + 2**POW_CONTRACT_MERKLE_TREE_DEPTH
msg_gwei_bytes8: bytes[8] = slice(concat("", convert(msg.value / GWEI_PER_ETH, bytes32)), start=24, len=8)
timestamp_bytes8: bytes[8] = slice(concat("", convert(block.timestamp, bytes32)), start=24, len=8)
deposit_data: bytes[2064] = concat(msg_gwei_bytes8, timestamp_bytes8, deposit_parameters)
log.HashChainValue(self.receipt_tree[1], deposit_data, self.full_deposit_count)
self.receipt_tree[index] = sha3(deposit_data)
for i in range(32): # POW_CONTRACT_MERKLE_TREE_DEPTH (range of constant var not yet supported)
index /= 2
self.receipt_tree[index] = sha3(concat(self.receipt_tree[index * 2], self.receipt_tree[index * 2 + 1]))
assert msg.value >= as_wei_value(MIN_DEPOSIT, "ether")
assert msg.value <= as_wei_value(MAX_DEPOSIT, "ether")
if msg.value == as_wei_value(MAX_DEPOSIT, "ether"):
self.full_deposit_count += 1
if self.full_deposit_count == CHAIN_START_FULL_DEPOSIT_THRESHOLD:
timestamp_day_boundary: uint256 = as_unitless_number(block.timestamp) - as_unitless_number(block.timestamp) % SECONDS_PER_DAY + SECONDS_PER_DAY
timestamp_day_boundary_bytes8: bytes[8] = slice(concat("", convert(timestamp_day_boundary, bytes32)), start=24, len=8)
log.ChainStart(self.receipt_tree[1], timestamp_day_boundary_bytes8)
@public
@constant
def get_receipt_root() -> bytes32:
return self.receipt_tree[1]
The contract is at address DEPOSIT_CONTRACT_ADDRESS
. When a user wishes to become a validator by moving their ETH from Ethereum 1.0 to the Ethereum 2.0 chain, they should call the deposit
function, sending up to MAX_DEPOSIT
ETH and providing as deposit_parameters
a SimpleSerialize'd DepositParametersRecord
object (defined in "Data structures" below). If the user wishes to deposit more than MAX_DEPOSIT
ETH, they would need to make multiple calls.
When the contract publishes a ChainStart
log, this initializes the chain, calling on_startup
with:
initial_validator_entries
equal to the list of data records published as HashChainValue logs so far, in the order in which they were published (oldest to newest).genesis_time
equal to thetime
value published in the logprocessed_pow_receipt_root
equal to thereceipt_root
value published in the log
Data structures
Deposits
DepositParametersRecord
{
# BLS pubkey
'pubkey': 'int384',
# BLS proof of possession (a BLS signature)
'proof_of_possession': ['int384'],
# Withdrawal credentials (TODO: define the format)
'withdrawal_credentials': 'hash32',
# The initial RANDAO commitment
'randao_commitment': 'hash32',
}
Beacon chain blocks
BeaconBlock
{
# Slot number
'slot': 'uint64',
# Proposer RANDAO reveal
'randao_reveal': 'hash32',
# Candidate PoW receipt root
'candidate_pow_receipt_root': 'hash32',
# Skip list of ancestor beacon block hashes
# i'th item is the most recent ancestor whose slot is a multiple of 2**i for i = 0, ..., 31
'ancestor_hashes': ['hash32'],
# State root
'state_root': 'hash32',
# Attestations
'attestations': [AttestationRecord],
# Specials (e.g. exits, penalties)
'specials': [SpecialRecord],
# Proposer signature
'proposer_signature': ['uint384'],
}
AttestationRecord
{
# Attestation data
'data': AttestationData,
# Attester participation bitfield
'participation_bitfield': 'bytes',
# Proof of custody bitfield
'custody_bitfield': 'bytes',
# BLS aggregate signature
'aggregate_sig': ['uint384'],
}
AttestationData
{
# Slot number
'slot': 'uint64',
# Shard number
'shard': 'uint64',
# Hash of the signed beacon block
'beacon_block_hash': 'hash32',
# Hash of the ancestor at the epoch boundary
'epoch_boundary_hash': 'hash32',
# Shard block hash being attested to
'shard_block_hash': 'hash32',
# Last crosslink hash
'latest_crosslink_hash': 'hash32',
# Slot of the last justified beacon block
'justified_slot': 'uint64',
# Hash of the last justified beacon block
'justified_block_hash': 'hash32',
}
ProposalSignedData
{
# Slot number
'slot': 'uint64',
# Shard number (`BEACON_CHAIN_SHARD_NUMBER` for beacon chain)
'shard': 'uint64',
# Block hash
'block_hash': 'hash32',
}
SpecialRecord
{
# Kind
'kind': 'uint64',
# Data
'data': 'bytes',
}
Beacon chain state
BeaconState
{
# Validator registry
'validator_registry': [ValidatorRecord],
'validator_registry_latest_change_slot': 'uint64',
'validator_registry_exit_count': 'uint64',
'validator_registry_delta_chain_tip': 'hash32', # For light clients to easily track delta
# Randomness and committees
'randao_mix': 'hash32',
'next_seed': 'hash32',
'shard_and_committee_for_slots': [[ShardAndCommittee]],
'persistent_committees': [['uint24']],
'persistent_committee_reassignments': [ShardReassignmentRecord],
# Finality
'previous_justified_slot': 'uint64',
'justified_slot': 'uint64',
'justified_slot_bitfield': 'uint64',
'finalized_slot': 'uint64',
# Recent state
'latest_crosslinks': [CrosslinkRecord],
'latest_state_recalculation_slot': 'uint64',
'latest_block_hashes': ['hash32'], # Needed to process attestations, older to newer
'latest_penalized_exit_balances': ['uint64'], # Balances penalized in the current withdrawal period
'latest_attestations': [PendingAttestationRecord],
# PoW receipt root
'processed_pow_receipt_root': 'hash32',
'candidate_pow_receipt_roots': [CandidatePoWReceiptRootRecord],
# Misc
'genesis_time': 'uint64',
'fork_data': ForkData, # For versioning hard forks
}
ValidatorRecord
{
# BLS public key
'pubkey': 'uint384',
# Withdrawal credentials
'withdrawal_credentials': 'hash32',
# RANDAO commitment
'randao_commitment': 'hash32',
# Slots the proposer has skipped (ie. layers of RANDAO expected)
'randao_skips': 'uint64',
# Balance in Gwei
'balance': 'uint64',
# Status code
'status': 'uint64',
# Slot when validator last changed status (or 0)
'latest_status_change_slot': 'uint64',
# Exit counter when validator exited (or 0)
'exit_count': 'uint64',
}
CrosslinkRecord
{
# Slot number
'slot': 'uint64',
# Shard chain block hash
'shard_block_hash': 'hash32',
}
ShardAndCommittee
{
# Shard number
'shard': 'uint64',
# Validator indices
'committee': ['uint24'],
# Total validator count (for proofs of custody)
'total_validator_count': 'uint64',
}
ShardReassignmentRecord
{
# Which validator to reassign
'validator_index': 'uint24',
# To which shard
'shard': 'uint64',
# When
'slot': 'uint64',
}
CandidatePoWReceiptRootRecord
{
# Candidate PoW receipt root
'candidate_pow_receipt_root': 'hash32',
# Vote count
'votes': 'uint64',
}
PendingAttestationRecord
{
# Signed data
'data': AttestationData,
# Attester participation bitfield
'participation_bitfield': 'bytes',
# Proof of custody bitfield
'custody_bitfield': 'bytes',
# Slot in which it was included
'slot_included': 'uint64',
}
ForkData
{
# Previous fork version
'pre_fork_version': 'uint64',
# Post fork version
'post_fork_version': 'uint64',
# Fork slot number
'fork_slot': 'uint64',
Beacon chain processing
The beacon chain is the system chain for Ethereum 2.0. The main responsibilities of the beacon chain are:
- Store and maintain the registry of validators
- Process crosslinks (see above)
- Process its own block-by-block consensus, as well as the finality gadget
Processing the beacon chain is fundamentally similar to processing the Ethereum 1.0 chain in many respects. Clients download and process blocks, and maintain a view of what is the current "canonical chain", terminating at the current "head". However, because of the beacon chain's relationship with Ethereum 1.0, and because it is a proof-of-stake chain, there are differences.
For a beacon chain block, block
, to be processed by a node, the following conditions must be met:
- The parent block,
block.ancestor_hashes[0]
, has been processed and accepted. - The Ethereum 1.0 block pointed to by the
state.processed_pow_receipt_root
has been processed and accepted. - The node's local clock time is greater than or equal to
state.genesis_time + block.slot * SLOT_DURATION
.
If these conditions are not met, the client should delay processing the beacon block until the conditions are all satisfied.
Beacon block production is significantly different because of the proof of stake mechanism. A client simply checks what it thinks is the canonical chain when it should create a block, and looks up what its slot number is; when the slot arrives, it either proposes or attests to a block as required. Note that this requires each node to have a clock that is roughly (ie. within SLOT_DURATION
seconds) synchronized with the other nodes.
Beacon chain fork choice rule
The beacon chain fork choice rule is a hybrid that combines justification and finality with Latest Message Driven (LMD) Greediest Heaviest Observed SubTree (GHOST). At any point in time a validator v
subjectively calculates the beacon chain head as follows.
- Let
store
be the set of attestations and blocks that the validatorv
has observed and verified (in particular, block ancestors must be recursively verified). Attestations not part of any chain are still included instore
. - Let
finalized_head
be the finalized block with the highest slot number. (A blockB
is finalized if there is a descendant ofB
instore
the processing of which setsB
as finalized.) - Let
justified_head
be the descendant offinalized_head
with the highest slot number that has been justified for at leastEPOCH_LENGTH
slots. (A blockB
is justified if there is a descendant ofB
instore
the processing of which setsB
as justified.) If no such descendant exists setjustified_head
tofinalized_head
. - Let
get_ancestor(store, block, slot)
be the ancestor ofblock
with slot numberslot
. Theget_ancestor
function can be defined recursively asdef get_ancestor(store, block, slot): return block if block.slot == slot else get_ancestor(store, store.get_parent(block), slot)
. - Let
get_latest_attestation(store, validator)
be the attestation with the highest slot number instore
fromvalidator
. If several such attestations exist, use the one the validatorv
observed first. - Let
get_latest_attestation_target(store, validator)
be the target block in the attestationget_latest_attestation(store, validator)
. - The head is
lmd_ghost(store, justified_head)
where the functionlmd_ghost
is defined below. Note that the implementation below is suboptimal; there are implementations that compute the head in time logarithmic in slot count.
def lmd_ghost(store, start):
validators = start.state.validator_registry
active_validators = [validators[i] for i in
get_active_validator_indices(validators, start.slot)]
attestation_targets = [get_latest_attestation_target(store, validator)
for validator in active_validators]
def get_vote_count(block):
return len([target for target in attestation_targets if
get_ancestor(store, target, block.slot) == block])
head = start
while 1:
children = get_children(head)
if len(children) == 0:
return head
head = max(children, key=get_vote_count)
Beacon chain state transition function
We now define the state transition function. At a high level the state transition is made up of two parts:
- The per-block processing, which happens every block, and only affects a few parts of the
state
. - The inter-epoch state recalculation, which happens only if
block.slot >= state.latest_state_recalculation_slot + EPOCH_LENGTH
, and affects the entirestate
.
The inter-epoch state recalculation generally focuses on changes to the validator registry, including adjusting balances and adding and removing validators, as well as processing crosslinks and managing block justification/finalization, while the per-block processing generally focuses on verifying aggregate signatures and saving temporary records relating to the per-block activity in the BeaconState
.
Helper functions
Note: The definitions below are for specification purposes and are not necessarily optimal implementations.
get_active_validator_indices
def get_active_validator_indices(validators: [ValidatorRecords]) -> List[int]:
"""
Gets indices of active validators from ``validators``.
"""
return [i for i, v in enumerate(validators) if v.status in [ACTIVE, PENDING_EXIT]]
shuffle
def shuffle(values: List[Any], seed: Hash32) -> List[Any]:
"""
Returns the shuffled ``values`` with ``seed`` as entropy.
"""
values_count = len(values)
# Entropy is consumed from the seed in 3-byte (24 bit) chunks.
rand_bytes = 3
# The highest possible result of the RNG.
rand_max = 2 ** (rand_bytes * 8) - 1
# The range of the RNG places an upper-bound on the size of the list that
# may be shuffled. It is a logic error to supply an oversized list.
assert values_count < rand_max
output = [x for x in values]
source = seed
index = 0
while index < values_count - 1:
# Re-hash the `source` to obtain a new pattern of bytes.
source = hash(source)
# Iterate through the `source` bytes in 3-byte chunks.
for position in range(0, 32 - (32 % rand_bytes), rand_bytes):
# Determine the number of indices remaining in `values` and exit
# once the last index is reached.
remaining = values_count - index
if remaining == 1:
break
# Read 3-bytes of `source` as a 24-bit big-endian integer.
sample_from_source = int.from_bytes(source[position:position + rand_bytes], 'big')
# Sample values greater than or equal to `sample_max` will cause
# modulo bias when mapped into the `remaining` range.
sample_max = rand_max - rand_max % remaining
# Perform a swap if the consumed entropy will not cause modulo bias.
if sample_from_source < sample_max:
# Select a replacement index for the current index.
replacement_position = (sample_from_source % remaining) + index
# Swap the current index with the replacement index.
output[index], output[replacement_position] = output[replacement_position], output[index]
index += 1
else:
# The sample causes modulo bias. A new sample should be read.
pass
return output
split
def split(values: List[Any], split_count: int) -> List[Any]:
"""
Splits ``values`` into ``split_count`` pieces.
"""
list_length = len(values)
return [
values[(list_length * i // split_count): (list_length * (i + 1) // split_count)]
for i in range(split_count)
]
clamp
def clamp(minval: int, maxval: int, x: int) -> int:
"""
Clamps ``x`` between ``minval`` and ``maxval``.
"""
if x <= minval:
return minval
elif x >= maxval:
return maxval
else:
return x
get_new_shuffling
def get_new_shuffling(seed: Hash32,
validators: List[ValidatorRecord],
crosslinking_start_shard: int) -> List[List[ShardAndCommittee]]:
"""
Shuffles ``validators`` into shard committees using ``seed`` as entropy.
"""
active_validator_indices = get_active_validator_indices(validators)
committees_per_slot = clamp(
1,
SHARD_COUNT // EPOCH_LENGTH,
len(active_validator_indices) // EPOCH_LENGTH // TARGET_COMMITTEE_SIZE,
)
# Shuffle with seed
shuffled_active_validator_indices = shuffle(active_validator_indices, seed)
# Split the shuffled list into epoch_length pieces
validators_per_slot = split(shuffled_active_validator_indices, EPOCH_LENGTH)
output = []
for slot, slot_indices in enumerate(validators_per_slot):
# Split the shuffled list into committees_per_slot pieces
shard_indices = split(slot_indices, committees_per_slot)
shard_id_start = crosslinking_start_shard + slot * committees_per_slot
shards_and_committees_for_slot = [
ShardAndCommittee(
shard=(shard_id_start + shard_position) % SHARD_COUNT,
committee=indices,
total_validator_count=len(active_validator_indices),
)
for shard_position, indices in enumerate(shard_indices)
]
output.append(shards_and_committees_for_slot)
return output
Here's a diagram of what is going on:
get_shard_and_committees_for_slot
def get_shard_and_committees_for_slot(state: BeaconState,
slot: int) -> List[ShardAndCommittee]:
"""
Returns the ``ShardAndCommittee`` for the ``slot``.
"""
earliest_slot_in_array = state.latest_state_recalculation_slot - EPOCH_LENGTH
assert earliest_slot_in_array <= slot < earliest_slot_in_array + EPOCH_LENGTH * 2
return state.shard_and_committee_for_slots[slot - earliest_slot_in_array]
get_block_hash
def get_block_hash(state: BeaconState,
current_block: BeaconBlock,
slot: int) -> Hash32:
"""
Returns the block hash at a recent ``slot``.
"""
earliest_slot_in_array = current_block.slot - len(state.latest_block_hashes)
assert earliest_slot_in_array <= slot < current_block.slot
return state.latest_block_hashes[slot - earliest_slot_in_array]
get_block_hash(_, _, s)
should always return the block hash in the beacon chain at slot s
, and get_shard_and_committees_for_slot(_, s)
should not change unless the validator registry changes.
get_beacon_proposer_index
def get_beacon_proposer_index(state:BeaconState, slot: int) -> int:
"""
Returns the beacon proposer index for the ``slot``.
"""
first_committee = get_shard_and_committees_for_slot(state, slot)[0].committee
return first_committee[slot % len(first_committee)]
get_attestation_participants
def get_attestation_participants(state: State,
attestation_data: AttestationData,
participation_bitfield: bytes) -> List[int]:
"""
Returns the participant indices at for the ``attestation_data`` and ``participation_bitfield``.
"""
sncs_for_slot = get_shard_and_committees_for_slot(state, attestation_data.slot)
snc = [x for x in sncs_for_slot if x.shard == attestation_data.shard][0]
assert len(participation_bitfield) == ceil_div8(len(snc.committee))
participants = []
for i, validator_index in enumerate(snc.committee):
bit = (participation_bitfield[i//8] >> (7 - (i % 8))) % 2
if bit == 1:
participants.append(validator_index)
return participants
bytes1
, bytes2
, ...
bytes1(x): return x.to_bytes(1, 'big')
, bytes2(x): return x.to_bytes(2, 'big')
, and so on for all integers, particularly 1, 2, 3, 4, 8, 32.
get_effective_balance
def get_effective_balance(validator: ValidatorRecord) -> int:
"""
Returns the effective balance (also known as "balance at stake") for the ``validator``.
"""
return min(validator.balance, MAX_DEPOSIT)
get_new_validator_registry_delta_chain_tip
def get_new_validator_registry_delta_chain_tip(current_validator_registry_delta_chain_tip: Hash32,
index: int,
pubkey: int,
flag: int) -> Hash32:
"""
Compute the next hash in the validator registry delta hash chain.
"""
return hash(
current_validator_registry_delta_chain_tip +
bytes1(flag) +
bytes3(index) +
bytes32(pubkey)
)
integer_squareroot
def integer_squareroot(n: int) -> int:
"""
The largest integer ``x`` such that ``x**2`` is less than ``n``.
"""
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
On startup
A valid block with slot INITIAL_SLOT_NUMBER
(a "genesis block") has the following values. Other validity rules (eg. requiring a signature) do not apply.
{
'slot': INITIAL_SLOT_NUMBER,
'randao_reveal': ZERO_HASH,
'candidate_pow_receipt_roots': [],
'ancestor_hashes': [ZERO_HASH for i in range(32)],
'state_root': STARTUP_STATE_ROOT,
'attestations': [],
'specials': [],
'proposer_signature': [0, 0],
}
STARTUP_STATE_ROOT
is the root of the initial state, computed by running the following code:
def on_startup(initial_validator_entries: List[Any],
genesis_time: int,
processed_pow_receipt_root: Hash32) -> BeaconState:
# Activate validators
initial_validator_registry = []
for pubkey, deposit, proof_of_possession, withdrawal_credentials, randao_commitment in initial_validator_entries:
initial_validator_registry, _ = get_new_validators(
current_validators=initial_validator_registry,
fork_data=ForkData(
pre_fork_version=INITIAL_FORK_VERSION,
post_fork_version=INITIAL_FORK_VERSION,
fork_slot=2**64 - 1,
),
pubkey=pubkey,
deposit=deposit,
proof_of_possession=proof_of_possession,
withdrawal_credentials=withdrawal_credentials,
randao_commitment=randao_commitment,
current_slot=INITIAL_SLOT_NUMBER,
status=ACTIVE,
)
# Setup state
initial_shuffling = get_new_shuffling(ZERO_HASH, initial_validator_registry, 0)
state = BeaconState(
validator_registry=initial_validator_registry,
validator_registry_latest_change_slot=INITIAL_SLOT_NUMBER,
validator_registry_exit_count=0,
validator_registry_delta_chain_tip=ZERO_HASH,
# Randomness and committees
randao_mix=ZERO_HASH,
next_seed=ZERO_HASH,
shard_and_committee_for_slots=initial_shuffling + initial_shuffling,
persistent_committees=split(shuffle(initial_validator_registry, ZERO_HASH), SHARD_COUNT),
persistent_committee_reassignments=[],
# Finality
previous_justified_slot=INITIAL_SLOT_NUMBER,
justified_slot=INITIAL_SLOT_NUMBER,
justified_slot_bitfield=0,
finalized_slot=INITIAL_SLOT_NUMBER,
# Recent state
latest_crosslinks=[CrosslinkRecord(slot=INITIAL_SLOT_NUMBER, hash=ZERO_HASH) for _ in range(SHARD_COUNT)],
latest_state_recalculation_slot=INITIAL_SLOT_NUMBER,
latest_block_hashes=[ZERO_HASH for _ in range(EPOCH_LENGTH * 2)],
latest_penalized_exit_balances=[],
latest_attestations=[],
# PoW receipt root
processed_pow_receipt_root=processed_pow_receipt_root,
candidate_pow_receipt_roots=[],
# Misc
genesis_time=genesis_time,
fork_data=ForkData(
pre_fork_version=INITIAL_FORK_VERSION,
post_fork_version=INITIAL_FORK_VERSION,
fork_slot=2**64 - 1,
),
)
return state
Routine for adding a validator
This routine should be run for every validator that is activated as part of a log created on Ethereum 1.0 [TODO: explain where to check for these logs]. The status of the validators added after genesis is PENDING_ACTIVATION
. These logs should be processed in the order in which they are emitted by Ethereum 1.0.
First, some helper functions:
def min_empty_validator_index(validators: List[ValidatorRecord], current_slot: int) -> int:
for i, v in enumerate(validators):
if v.balance == 0 and v.latest_status_change_slot + DELETION_PERIOD <= current_slot:
return i
return None
def get_fork_version(fork_data: ForkData,
slot: int) -> int:
if slot < fork_data.fork_slot:
return fork_data.pre_fork_version
else:
return fork_data.post_fork_version
def get_domain(fork_data: ForkData,
slot: int,
domain_type: int) -> int:
return get_fork_version(
fork_data,
slot
) * 2**32 + domain_type
def get_new_validators(validators: List[ValidatorRecord],
fork_data: ForkData,
pubkey: int,
deposit: int,
proof_of_possession: bytes,
withdrawal_credentials: Hash32,
randao_commitment: Hash32,
status: int,
current_slot: int) -> Tuple[List[ValidatorRecord], int]:
assert BLSVerify(
pub=pubkey,
msg=hash(bytes32(pubkey) + withdrawal_credentials + randao_commitment),
sig=proof_of_possession,
domain=get_domain(
fork_data,
current_slot,
DOMAIN_DEPOSIT
)
)
validators_copy = copy.deepcopy(validators)
validator_pubkeys = [v.pubkey for v in validators_copy]
if pubkey not in validator_pubkeys:
# Add new validator
validator = ValidatorRecord(
pubkey=pubkey,
withdrawal_credentials=withdrawal_credentials,
randao_commitment=randao_commitment,
randao_skips=0,
balance=deposit,
status=status,
latest_status_change_slot=current_slot,
exit_count=0
)
index = min_empty_validator_index(validators_copy)
if index is None:
validators_copy.append(validator)
index = len(validators_copy) - 1
else:
validators_copy[index] = validator
else:
# Increase balance by deposit
index = validator_pubkeys.index(pubkey)
validator = validators_copy[index]
assert validator.withdrawal_credentials == withdrawal_credentials
validator.balance += deposit
return validators_copy, index
BLSVerify
is a function for verifying a BLS12-381 signature, defined in the BLS12-381 spec.
Now, to add a validator or top up an existing validator's balance:
def process_deposit(state: BeaconState,
pubkey: int,
deposit: int,
proof_of_possession: bytes,
withdrawal_credentials: Hash32,
randao_commitment: Hash32,
status: int,
current_slot: int) -> int:
"""
Process a deposit from Ethereum 1.0.
Note that this function mutates `state`.
"""
state.validator_registry, index = get_new_validators(
current_validators=state.validator_registry,
fork_data=ForkData(
pre_fork_version=state.fork_data.pre_fork_version,
post_fork_version=state.fork_data.post_fork_version,
fork_slot=state.fork_data.fork_slot,
),
pubkey=pubkey,
deposit=deposit,
proof_of_possession=proof_of_possession,
withdrawal_credentials=withdrawal_credentials,
randao_commitment=randao_commitment,
status=status,
current_slot=current_slot,
)
return index
Routine for removing a validator
def exit_validator(index: int,
state: BeaconState,
penalize: bool,
current_slot: int) -> None:
"""
Exit the validator with the given `index`.
Note that this function mutates `state`.
"""
state.validator_registry_exit_count += 1
validator = state.validator_registry[index]
validator.latest_status_change_slot = current_slot
validator.exit_count = state.validator_registry_exit_count
# Remove validator from persistent committees
for committee in state.persistent_committees:
for i, validator_index in committee:
if validator_index == index:
committee.pop(i)
break
if penalize:
validator.status = EXITED_WITH_PENALTY
state.latest_penalized_exit_balances[current_slot // COLLECTIVE_PENALTY_CALCULATION_PERIOD] += get_effective_balance(validator)
whistleblower = state.validator_registry[get_beacon_proposer_index(state, current_slot)]
whistleblower_reward = validator.balance // WHISTLEBLOWER_REWARD_QUOTIENT
whistleblower.balance += whistleblower_reward
validator.balance -= whistleblower_reward
else:
validator.status = PENDING_EXIT
state.validator_registry_delta_chain_tip = get_new_validator_registry_delta_chain_tip(
validator_registry_delta_chain_tip=state.validator_registry_delta_chain_tip,
index=index,
pubkey=validator.pubkey,
flag=EXIT,
)
Per-block processing
This procedure should be carried out for every beacon block (denoted block
).
- Let
parent_hash
be the hash of the immediate previous beacon block (ie. equal toblock.ancestor_hashes[0]
). - Let
parent
be the beacon block with the hashparent_hash
.
First, set state.latest_block_hashes
to the output of the following:
def append_to_recent_block_hashes(old_block_hashes: List[Hash32],
parent_slot: int,
current_slot: int,
parent_hash: Hash32) -> List[Hash32]:
d = current_slot - parent_slot
return old_block_hashes + [parent_hash] * d
The output of get_block_hash
should not change, except that it will no longer throw for current_slot - 1
. Also, check that the block's ancestor_hashes
array was correctly updated, using the following algorithm:
def update_ancestor_hashes(parent_ancestor_hashes: List[Hash32],
parent_slot: int,
parent_hash: Hash32) -> List[Hash32]:
new_ancestor_hashes = copy.copy(parent_ancestor_hashes)
for i in range(32):
if parent_slot % 2**i == 0:
new_ancestor_hashes[i] = parent_hash
return new_ancestor_hashes
Verify attestations
- Verify that
len(block.attestations) <= MAX_ATTESTATIONS_PER_BLOCK
.
For each attestation
in block.attestations
:
- Verify that
attestation.data.slot <= block.slot - MIN_ATTESTATION_INCLUSION_DELAY
. - Verify that
attestation.data.slot >= max(parent.slot - EPOCH_LENGTH + 1, 0)
. - Verify that
attestation.data.justified_slot
is equal tostate.justified_slot if attestation.data.slot >= state.latest_state_recalculation_slot else state.previous_justified_slot
. - Verify that
attestation.data.justified_block_hash
is equal toget_block_hash(state, block, attestation.data.justified_slot)
. - Verify that either
attestation.data.latest_crosslink_hash
orattestation.data.shard_block_hash
equalsstate.crosslinks[shard].shard_block_hash
. aggregate_sig
verification:- Let
participants = get_attestation_participants(state, attestation.data, attestation.participation_bitfield)
. - Let
group_public_key = BLSAddPubkeys([state.validator_registry[v].pubkey for v in participants])
. - Verify that
BLSVerify(pubkey=group_public_key, msg=SSZTreeHash(attestation.data) + bytes1(0), sig=aggregate_sig, domain=get_domain(state.fork_data, slot, DOMAIN_ATTESTATION))
.
- Let
- [TO BE REMOVED IN PHASE 1] Verify that
shard_block_hash == ZERO_HASH
. - Append
PendingAttestationRecord(data=attestation.data, participation_bitfield=attestation.participation_bitfield, custody_bitfield=attestation.custody_bitfield, slot_included=block.slot)
tostate.latest_attestations
.
Verify proposer signature
- Let
block_hash_without_sig
be the hash ofblock
whereproposer_signature
is set to[0, 0]
. - Let
proposal_hash = hash(ProposalSignedData(block.slot, BEACON_CHAIN_SHARD_NUMBER, block_hash_without_sig))
. - Verify that
BLSVerify(pubkey=state.validator_registry[get_beacon_proposer_index(state, block.slot)].pubkey, data=proposal_hash, sig=block.proposer_signature, domain=get_domain(state.fork_data, block.slot, DOMAIN_PROPOSAL))
.
Verify and process the RANDAO reveal
First run the following state transition to update randao_skips
variables for the missing slots.
for slot in range(parent.slot + 1, block.slot):
proposer_index = get_beacon_proposer_index(state, slot)
state.validator_registry[proposer_index].randao_skips += 1
Then:
- Let
repeat_hash(x, n) = x if n == 0 else repeat_hash(hash(x), n-1)
. - Let
proposer = state.validator_registry[get_beacon_proposer_index(state, block.slot)]
. - Verify that
repeat_hash(block.randao_reveal, proposer.randao_skips + 1) == proposer.randao_commitment
. - Set
state.randao_mix = xor(state.randao_mix, block.randao_reveal)
. - Set
proposer.randao_commitment = block.randao_reveal
. - Set
proposer.randao_skips = 0
.
Process PoW receipt root
If block.candidate_pow_receipt_root
is x.candidate_pow_receipt_root
for some x
in state.candidate_pow_receipt_roots
, set x.votes += 1
. Otherwise, append to state.candidate_pow_receipt_roots
a new CandidatePoWReceiptRootRecord(candidate_pow_receipt_root=block.candidate_pow_receipt_root, votes=1)
.
Process special objects
- Verify that the quantity of each type of object in
block.specials
is less than or equal to its maximum (see table at the top). - Verify that objects are sorted in order of
kind
. That is,block.specials[i+1].kind >= block.specials[i].kind
for0 <= i < len(block.specials-1)
.
For each special
in block.specials
:
- Verify that
special.kind
is a valid value. - Verify that
special.data
deserializes according to the format for the givenkind
. - Process
special.data
as specified below for each kind.
VOLUNTARY_EXIT
{
'slot': 'unit64',
'validator_index': 'uint64',
'signature': '[uint384]',
}
- Let
validator = state.validator_registry[validator_index]
. - Verify that
BLSVerify(pubkey=validator.pubkey, msg=ZERO_HASH, sig=signature, domain=get_domain(state.fork_data, slot, DOMAIN_EXIT))
. - Verify that
validator.status == ACTIVE
. - Verify that
block.slot >= slot
. - Verify that
block.slot >= validator.latest_status_change_slot + SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD
. - Run
exit_validator(validator_index, state, penalize=False, current_slot=block.slot)
.
CASPER_SLASHING
We define the following SpecialAttestationData
object and the helper verify_special_attestation_data
:
{
'aggregate_sig_poc_0_indices': '[uint24]',
'aggregate_sig_poc_1_indices': '[uint24]',
'data': AttestationData,
'aggregate_sig': '[uint384]',
}
def verify_special_attestation_data(state: State, obj: SpecialAttestationData) -> bool:
pubs = [aggregate_pubkey([state.validators[i].pubkey for i in obj.aggregate_sig_poc_0_indices]),
aggregate_pubkey([state.validators[i].pubkey for i in obj.aggregate_sig_poc_1_indices])]
return BLSMultiVerify(pubkeys=pubs, msgs=[SSZTreeHash(obj)+bytes1(0), SSZTreeHash(obj)+bytes1(1), sig=aggregate_sig)
{
vote_1: SpecialAttestationData,
vote_2: SpecialAttestationData,
}
- Verify that
verify_special_attestation_data(vote_1)
. - Verify that
verify_special_attestation_data(vote_2)
. - Verify that
vote_1.data != vote_2.data
. - Let
indices(vote) = vote.aggregate_sig_poc_0_indices + vote.aggregate_sig_poc_1_indices
. - Let
intersection = [x for x in indices(vote_1) if x in indices(vote_2)]
. - Verify that
len(intersection) >= 1
. - Verify that
vote_1.data.justified_slot + 1 < vote_2.data.justified_slot + 1 == vote_2.data.slot < vote_1.data.slot
orvote_1.data.slot == vote_2.data.slot
.
For each validator index i
in intersection
, if state.validator_registry[i].status
does not equal EXITED_WITH_PENALTY
, then run exit_validator(i, state, penalize=True, current_slot=block.slot)
PROPOSER_SLASHING
{
'proposer_index': 'uint24',
'proposal_data_1': ProposalSignedData,
'proposal_signature_1': '[uint384]',
'proposal_data_2': ProposalSignedData,
'proposal_signature_2': '[uint384]',
}
- Verify that
BLSVerify(pubkey=state.validator_registry[proposer_index].pubkey, msg=hash(proposal_data_1), sig=proposal_signature_1, domain=get_domain(state.fork_data, proposal_data_1.slot, DOMAIN_PROPOSAL))
. - Verify that
BLSVerify(pubkey=state.validator_registry[proposer_index].pubkey, msg=hash(proposal_data_2), sig=proposal_signature_2, domain=get_domain(state.fork_data, proposal_data_2.slot, DOMAIN_PROPOSAL))
. - Verify that
proposal_data_1 != proposal_data_2
. - Verify that
proposal_data_1.slot == proposal_data_2.slot
. - Verify that
state.validator_registry[proposer_index].status != EXITED_WITH_PENALTY
. - Run
exit_validator(proposer_index, state, penalize=True, current_slot=block.slot)
.
DEPOSIT_PROOF
{
'merkle_branch': '[hash32]',
'merkle_tree_index': 'uint64',
'deposit_data': {
'deposit_parameters': DepositParametersRecord,
'value': 'uint64',
'timestamp': 'uint64'
},
}
Let serialized_deposit_data
be the serialized form of deposit_data. It should be the
DepositParametersRecordfollowed by 8 bytes for
deposit_data.valueand 8 bytes for
deposit_data.timestamp. That is, it should match
deposit_data` in the Ethereum 1.0 deposit contract of which the hash was placed into the Merkle tree.
Use the following procedure to verify the merkle_branch
, setting leaf=serialized_deposit_data
, depth=POW_CONTRACT_MERKLE_TREE_DEPTH
and root=state.processed_pow_receipt_root
:
def verify_merkle_branch(leaf: Hash32, branch: [Hash32], depth: int, index: int, root: Hash32) -> bool:
value = leaf
for i in range(depth):
if index % 2:
value = hash(branch[i], value)
else:
value = hash(value, branch[i])
return value == root
- Verify that
block.slot - (deposit_data.timestamp - state.genesis_time) // SLOT_DURATION < DELETION_PERIOD
. - Run the following:
process_deposit(
state=state,
pubkey=deposit_data.deposit_parameters.pubkey,
deposit=deposit_data.value,
proof_of_possession=deposit_data.deposit_parameters.proof_of_possession,
withdrawal_credentials=deposit_data.deposit_parameters.withdrawal_credentials,
randao_commitment=deposit_data.deposit_parameters.randao_commitment,
status=PENDING_ACTIVATION,
current_slot=block.slot
)
Epoch boundary processing
Repeat the steps in this section while block.slot - state.latest_state_recalculation_slot >= EPOCH_LENGTH
. For simplicity, we use s
as state.latest_state_recalculation_slot
.
Note that state.latest_state_recalculation_slot
will always be a multiple of EPOCH_LENGTH
. In the "happy case", this process will trigger, and loop once, every time block.slot
passes a new exact multiple of EPOCH_LENGTH
, but if a chain skips more than an entire epoch then the loop may run multiple times, incrementing state.latest_state_recalculation_slot
by EPOCH_LENGTH
with each iteration.
Precomputation
All validators:
- Let
active_validators = [state.validator_registry[i] for i in get_active_validator_indices(state.validator_registry)]
. - Let
total_balance = sum([get_effective_balance(v) for v in active_validators])
. Lettotal_balance_in_eth = total_balance // GWEI_PER_ETH
. - Let
reward_quotient = BASE_REWARD_QUOTIENT * integer_squareroot(total_balance_in_eth)
. (The per-slot maximum interest rate is2/reward_quotient
.)
Validators justifying the epoch boundary block at the start of the current epoch:
- Let
this_epoch_attestations = [a for a in state.latest_attestations if s <= a.data.slot < s + EPOCH_LENGTH]
. (note: this is the set of attestations of slots in the epochs...s+EPOCH_LENGTH-1
, not attestations that got included in the chain during the epochs...s+EPOCH_LENGTH-1
) - Let
this_epoch_boundary_attestations = [a for a in this_epoch_attestations if a.data.epoch_boundary_hash == get_block_hash(state, block, s) and a.justified_slot == state.justified_slot]
. - Let
this_epoch_boundary_attesters
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_boundary_attestations]
. - Let
this_epoch_boundary_attesting_balance = sum([get_effective_balance(v) for v in this_epoch_boundary_attesters])
.
Validators justifying the epoch boundary block at the start of the previous epoch:
- Let
previous_epoch_attestations = [a for a in state.latest_attestations if s - EPOCH_LENGTH <= a.slot < s]
. - Let
previous_epoch_boundary_attestations = [a for a in this_epoch_attestations + previous_epoch_attestations if a.epoch_boundary_hash == get_block_hash(state, block, s - EPOCH_LENGTH) and a.justified_slot == state.previous_justified_slot]
. - Let
previous_epoch_boundary_attesters
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.participation_bitfield) for a in previous_epoch_boundary_attestations]
. - Let
previous_epoch_boundary_attesting_balance = sum([get_effective_balance(v) for v in previous_epoch_boundary_attesters])
.
For every ShardAndCommittee
object obj
in state.shard_and_committee_for_slots
:
- Let
attesting_validators(obj, shard_block_hash)
be the union of the validator index sets given by[get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_attestations + previous_epoch_attestations if a.shard == obj.shard and a.shard_block_hash == shard_block_hash]
. - Let
attesting_validators(obj)
be equal toattesting_validators(obj, shard_block_hash)
for the value ofshard_block_hash
such thatsum([get_effective_balance(v) for v in attesting_validators(obj, shard_block_hash)])
is maximized (ties broken by favoring lowershard_block_hash
values). - Let
total_attesting_balance(obj)
be the sum of the balances-at-stake ofattesting_validators(obj)
. - Let
winning_hash(obj)
be the winningshard_block_hash
value. - Let
total_balance(obj) = sum([get_effective_balance(v) for v in obj.committee])
.
Let inclusion_slot(v)
equal a.slot_included
for the attestation a
where v
is in get_attestation_participants(state, a.data, a.participation_bitfield)
, and inclusion_distance(v) = a.slot_included - a.data.slot
for the same attestation. We define a function adjust_for_inclusion_distance(magnitude, distance)
which adjusts the reward of an attestation based on how long it took to get included (the longer, the lower the reward). Returns a value between 0 and magnitude
.
def adjust_for_inclusion_distance(magnitude: int, distance: int) -> int:
return magnitude // 2 + (magnitude // 2) * MIN_ATTESTATION_INCLUSION_DELAY // distance
For any validator v
, let base_reward(v) = get_effective_balance(v) // reward_quotient
.
Adjust justified slots and crosslink status
- Set
state.justified_slot_bitfield = (state.justified_slot_bitfield * 2) % 2**64
. - If
3 * previous_epoch_boundary_attesting_balance >= 2 * total_balance
then setstate.justified_slot_bitfield &= 2
(ie. flip the second lowest bit to 1) andnew_justified_slot = s - EPOCH_LENGTH
. - If
3 * this_epoch_boundary_attesting_balance >= 2 * total_balance
then setstate.justified_slot_bitfield &= 1
(ie. flip the lowest bit to 1) andnew_justified_slot = s
. - If
state.justified_slot == s - EPOCH_LENGTH and state.justified_slot_bitfield % 4 == 3
, setstate.finalized_slot = state.justified_slot
. - If
state.justified_slot == s - EPOCH_LENGTH - EPOCH_LENGTH and state.justified_slot_bitfield % 8 == 7
, setstate.finalized_slot = state.justified_slot
. - If
state.justified_slot == s - EPOCH_LENGTH - 2 * EPOCH_LENGTH and state.justified_slot_bitfield % 16 in (15, 14)
, setstate.finalized_slot = state.justified_slot
. - Set
state.previous_justified_slot = state.justified_slot
and ifnew_justified_slot
has been set, setstate.justified_slot = new_justified_slot
.
For every ShardAndCommittee
object obj
:
- If
3 * total_attesting_balance(obj) >= 2 * total_balance(obj)
, setcrosslinks[shard] = CrosslinkRecord(slot=state.latest_state_recalculation_slot + EPOCH_LENGTH, hash=winning_hash(obj))
.
Balance recalculations related to FFG rewards
Note: When applying penalties in the following balance recalculations implementers should make sure the uint64
does not underflow.
- Let
inactivity_penalty_quotient = SQRT_E_DROP_TIME**2
. (The portion lost by offline validators afterD
epochs is aboutD*D/2/inactivity_penalty_quotient
.) - Let
time_since_finality = block.slot - state.finalized_slot
.
Case 1: time_since_finality <= 4 * EPOCH_LENGTH
:
- Any validator
v
inprevious_epoch_boundary_attesters
gainsadjust_for_inclusion_distance(base_reward(v) * previous_epoch_boundary_attesting_balance // total_balance, inclusion_distance(v))
. - Any active validator
v
not inprevious_epoch_boundary_attesters
losesbase_reward(v)
.
Case 2: time_since_finality > 4 * EPOCH_LENGTH
:
- Any validator in
previous_epoch_boundary_attesters
sees their balance unchanged. - Any active validator
v
not inprevious_epoch_boundary_attesters
, and any validator withstatus == EXITED_WITH_PENALTY
, losesbase_reward(v) + get_effective_balance(v) * time_since_finality // inactivity_penalty_quotient
.
For each v
in previous_epoch_boundary_attesters
, we determine the proposer proposer_index = get_beacon_proposer_index(state, inclusion_slot(v))
and set state.validator_registry[proposer_index].balance += base_reward(v) // INCLUDER_REWARD_QUOTIENT
.
Balance recalculations related to crosslink rewards
For every ShardAndCommittee
object obj
in state.shard_and_committee_for_slots[:EPOCH_LENGTH]
(ie. the objects corresponding to the epoch before the current one), for each v
in [state.validator_registry[index] for index in obj.committee]
, adjust balances as follows:
- If
v in attesting_validators(obj)
,v.balance += adjust_for_inclusion_distance(base_reward(v) * total_attesting_balance(obj) // total_balance(obj)), inclusion_distance(v))
. - If
v not in attesting_validators(obj)
,v.balance -= base_reward(v)
.
Ethereum 1.0 chain related rules
If state.latest_state_recalculation_slot % POW_RECEIPT_ROOT_VOTING_PERIOD == 0
, then:
- If for any
x
instate.candidate_pow_receipt_root
,x.votes * 2 >= POW_RECEIPT_ROOT_VOTING_PERIOD
setstate.processed_pow_receipt_root = x.receipt_root
. - Set
state.candidate_pow_receipt_roots = []
.
Validator registry change
A validator registry change occurs if all of the following criteria are satisfied:
state.finalized_slot > state.validator_registry_latest_change_slot
- For every shard number
shard
instate.shard_and_committee_for_slots
,crosslinks[shard].slot > state.validator_registry_latest_change_slot
A helper function is defined as:
def get_changed_validators(validators: List[ValidatorRecord],
latest_penalized_exit_balances: List[int],
validator_registry_delta_chain_tip: int,
current_slot: int) -> Tuple[List[ValidatorRecord], List[int], int]:
"""
Return changed validator registry and `latest_penalized_exit_balances`, `validator_registry_delta_chain_tip`.
"""
# The active validators
active_validator_indices = get_active_validator_indices(validators)
# The total balance of active validators
total_balance = sum([get_effective_balance(v) for i, v in enumerate(validators) if i in active_validator_indices])
# The maximum total Gwei that can be deposited and withdrawn
max_allowable_change = max(
2 * MAX_DEPOSIT * GWEI_PER_ETH,
total_balance // MAX_CHURN_QUOTIENT
)
# Go through the list start to end, depositing and withdrawing as many as possible
total_changed = 0
for i in range(len(validators)):
if validators[i].status == PENDING_ACTIVATION:
validators[i].status = ACTIVE
total_changed += get_effective_balance(validators[i])
validator_registry_delta_chain_tip = get_new_validator_registry_delta_chain_tip(
validator_registry_delta_chain_tip=validator_registry_delta_chain_tip,
index=i,
pubkey=validators[i].pubkey,
flag=ACTIVATION,
)
if validators[i].status == EXITED_WITHOUT_PENALTY:
validators[i].latest_status_change_slot = current_slot
total_changed += get_effective_balance(validators[i])
validator_registry_delta_chain_tip = get_new_validator_registry_delta_chain_tip(
validator_registry_delta_chain_tip=validator_registry_delta_chain_tip,
index=i,
pubkey=validators[i].pubkey,
flag=EXIT,
)
if total_changed >= max_allowable_change:
break
# Calculate the total ETH that has been penalized in the last ~2-3 withdrawal periods
period_index = current_slot // COLLECTIVE_PENALTY_CALCULATION_PERIOD
total_penalties = (
(latest_penalized_exit_balances[period_index]) +
(latest_penalized_exit_balances[period_index - 1] if period_index >= 1 else 0) +
(latest_penalized_exit_balances[period_index - 2] if period_index >= 2 else 0)
)
# Calculate penalties for slashed validators
def to_penalize(v):
return v.status == EXITED_WITH_PENALTY
validators_to_penalize = filter(to_penalize, validators)
for v in validators_to_penalize:
v.balance -= get_effective_balance(v) * min(total_penalties * 3, total_balance) // total_balance
return validators, latest_penalized_exit_balances, validator_registry_delta_chain_tip
Then, run the following algorithm to update the validator registry:
def change_validators(state: BeaconState,
current_slot: int) -> None:
"""
Change validator registry.
Note that this function mutates `state`.
"""
state.validator_registry, state.latest_penalized_exit_balances = get_changed_validators(
copy.deepcopy(state.validator_registry),
copy.deepcopy(state.latest_penalized_exit_balances),
state.validator_registry_delta_chain_tip,
current_slot
)
And perform the following updates to the state
:
- Set
state.validator_registry_latest_change_slot = s + EPOCH_LENGTH
. - Set
state.shard_and_committee_for_slots[:EPOCH_LENGTH] = state.shard_and_committee_for_slots[EPOCH_LENGTH:]
. - Let
state.next_start_shard = (state.shard_and_committee_for_slots[-1][-1].shard + 1) % SHARD_COUNT
. - Set
state.shard_and_committee_for_slots[EPOCH_LENGTH:] = get_new_shuffling(state.next_seed, state.validator_registry, next_start_shard)
. - Set
state.next_seed = state.randao_mix
.
If a validator registry change does NOT happen
- Set
state.shard_and_committee_for_slots[:EPOCH_LENGTH] = state.shard_and_committee_for_slots[EPOCH_LENGTH:]
. - Let
time_since_finality = block.slot - state.validator_registry_latest_change_slot
. - Let
start_shard = state.shard_and_committee_for_slots[0][0].shard
. - If
time_since_finality * EPOCH_LENGTH <= MIN_VALIDATOR_REGISTRY_CHANGE_INTERVAL
ortime_since_finality
is an exact power of 2, setstate.shard_and_committee_for_slots[EPOCH_LENGTH:] = get_new_shuffling(state.next_seed, state.validator_registry, start_shard)
and setstate.next_seed = state.randao_mix
. Note thatstart_shard
is not changed from the last epoch.
Proposer reshuffling
Run the following code to update the shard proposer set:
active_validator_indices = get_active_validator_indices(state.validator_registry)
num_validators_to_reshuffle = len(active_validator_indices) // SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD
for i in range(num_validators_to_reshuffle):
# Multiplying i to 2 to ensure we have different input to all the required hashes in the shuffling
# and none of the hashes used for entropy in this loop will be the same
validator_index = active_validator_indices[hash(state.randao_mix + bytes8(i * 2)) % len(active_validator_indices)]
new_shard = hash(state.randao_mix + bytes8(i * 2 + 1)) % SHARD_COUNT
shard_reassignment_record = ShardReassignmentRecord(
validator_index=validator_index,
shard=new_shard,
slot=s + SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD
)
state.persistent_committee_reassignments.append(shard_reassignment_record)
while len(state.persistent_committee_reassignments) > 0 and state.persistent_committee_reassignments[0].slot <= s:
reassignment = state.persistent_committee_reassignments.pop(0)
for committee in state.persistent_committees:
if reassignment.validator_index in committee:
committee.pop(committee.index(reassignment.validator_index))
state.persistent_committees[reassignment.shard].append(reassignment.validator_index)
Finally...
- Remove all attestation records older than slot
s
. - For any validator with index
i
with balance less thanMIN_BALANCE
and statusACTIVE
, runexit_validator(i, state, penalize=False, current_slot=block.slot)
. - Set
state.latest_block_hashes = state.latest_block_hashes[EPOCH_LENGTH:]
. - Set
state.latest_state_recalculation_slot += EPOCH_LENGTH
.
Appendix
Appendix A - Hash function
We aim to have a STARK-friendly hash function hash(x)
for the production launch of the beacon chain. While the standardisation process for a STARK-friendly hash function takes place—led by STARKware, who will produce a detailed report with recommendations—we use BLAKE2b-512
as a placeholder. Specifically, we set hash(x) := BLAKE2b-512(x)[0:32]
where the BLAKE2b-512
algorithm is defined in RFC 7693 and the input x
is of type bytes
.
References
This section is divided into Normative and Informative references. Normative references are those that must be read in order to implement this specification, while Informative references are merely that, information. An example of the former might be the details of a required consensus algorithm, and an example of the latter might be a pointer to research that demonstrates why a particular consensus algorithm might be better suited for inclusion in the standard than another.
Normative
Informative
python-poc
Python proof-of-concept implementation. Ethereum Foundation. URL: https://github.com/ethereum/beacon_chain
Copyright
Copyright and related rights waived via CC0.