69 KiB
Ethereum 2.0 Phase 0 -- The Beacon Chain
Notice: This document is a work-in-progress for researchers and implementers.
Table of contents
- Ethereum 2.0 Phase 0 -- The Beacon Chain
- Table of contents
- Introduction
- Notation
- Custom types
- Constants
- Configuration
- Containers
- Helper functions
- Math
- Crypto
- Predicates
- Misc
- Beacon state accessors
get_current_epoch
get_previous_epoch
get_block_root
get_block_root_at_slot
get_randao_mix
get_active_validator_indices
get_validator_churn_limit
get_seed
get_committee_count
get_crosslink_committee
get_start_shard
get_shard_delta
get_beacon_proposer_index
get_attestation_data_slot
get_compact_committees_root
get_total_balance
get_total_active_balance
get_domain
get_indexed_attestation
get_attesting_indices
- Beacon state mutators
- Genesis
- Beacon chain state transition function
Introduction
This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.
At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0, the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when Ethereum 1.0 deposit receipts are processed by the beacon chain, the activation balance is reached, and a queuing process is completed. Exit is either voluntary or done forcibly as a penalty for misbehavior. The primary source of load on the beacon chain is "attestations". Attestations are simultaneously availability votes for a shard block and proof-of-stake votes for a beacon block. A sufficient number of attestations for the same shard block create a "crosslink", confirming the shard segment up to that shard block into the beacon chain. Crosslinks also serve as infrastructure for asynchronous cross-shard communication.
Notation
Code snippets appearing in this style
are to be interpreted as Python 3 code.
Custom types
We define the following Python custom types for type hinting and readability:
Name | SSZ equivalent | Description |
---|---|---|
Slot |
uint64 |
a slot number |
Epoch |
uint64 |
an epoch number |
Shard |
uint64 |
a shard number |
ValidatorIndex |
uint64 |
a validator registry index |
Gwei |
uint64 |
an amount in Gwei |
Hash |
Bytes32 |
a hash |
Version |
Bytes4 |
a fork version number |
DomainType |
Bytes4 |
a signature domain type |
Domain |
Bytes8 |
a signature domain |
BLSPubkey |
Bytes48 |
a BLS12-381 public key |
BLSSignature |
Bytes96 |
a BLS12-381 signature |
Constants
The following values are (non-configurable) constants used throughout the specification.
Name | Value |
---|---|
FAR_FUTURE_EPOCH |
Epoch(2**64 - 1) |
BASE_REWARDS_PER_EPOCH |
5 |
DEPOSIT_CONTRACT_TREE_DEPTH |
2**5 (= 32) |
SECONDS_PER_DAY |
86400 |
JUSTIFICATION_BITS_LENGTH |
4 |
ENDIANNESS |
'little' |
Configuration
Note: The default mainnet configuration values are included here for spec-design purposes. The different configurations for mainnet, testnets, and YAML-based testing can be found in the configs/constant_presets
directory. These configurations are updated for releases and may be out of sync during dev
changes.
Misc
Name | Value |
---|---|
SHARD_COUNT |
2**10 (= 1,024) |
TARGET_COMMITTEE_SIZE |
2**7 (= 128) |
MAX_VALIDATORS_PER_COMMITTEE |
2**12 (= 4,096) |
MIN_PER_EPOCH_CHURN_LIMIT |
2**2 (= 4) |
CHURN_LIMIT_QUOTIENT |
2**16 (= 65,536) |
SHUFFLE_ROUND_COUNT |
90 |
MIN_GENESIS_ACTIVE_VALIDATOR_COUNT |
2**16 (= 65,536) |
MIN_GENESIS_TIME |
1578009600 (Jan 3, 2020) |
- For the safety of crosslinks,
TARGET_COMMITTEE_SIZE
exceeds the recommended minimum committee size of 111; with sufficient active validators (at leastSLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE
), the shuffling algorithm ensures committee sizes of at leastTARGET_COMMITTEE_SIZE
. (Unbiasable randomness with a Verifiable Delay Function (VDF) will improve committee robustness and lower the safe minimum committee size.)
Gwei values
Name | Value |
---|---|
MIN_DEPOSIT_AMOUNT |
Gwei(2**0 * 10**9) (= 1,000,000,000) |
MAX_EFFECTIVE_BALANCE |
Gwei(2**5 * 10**9) (= 32,000,000,000) |
EJECTION_BALANCE |
Gwei(2**4 * 10**9) (= 16,000,000,000) |
EFFECTIVE_BALANCE_INCREMENT |
Gwei(2**0 * 10**9) (= 1,000,000,000) |
Initial values
Name | Value |
---|---|
GENESIS_SLOT |
Slot(0) |
GENESIS_EPOCH |
Epoch(0) |
BLS_WITHDRAWAL_PREFIX |
Bytes1(b'\x00') |
Time parameters
Name | Value | Unit | Duration |
---|---|---|---|
MIN_ATTESTATION_INCLUSION_DELAY |
2**0 (= 1) |
slots | 6 seconds |
SLOTS_PER_EPOCH |
2**6 (= 64) |
slots | 6.4 minutes |
MIN_SEED_LOOKAHEAD |
2**0 (= 1) |
epochs | 6.4 minutes |
ACTIVATION_EXIT_DELAY |
2**2 (= 4) |
epochs | 25.6 minutes |
SLOTS_PER_ETH1_VOTING_PERIOD |
2**10 (= 1,024) |
slots | ~1.7 hours |
SLOTS_PER_HISTORICAL_ROOT |
2**13 (= 8,192) |
slots | ~13 hours |
MIN_VALIDATOR_WITHDRAWABILITY_DELAY |
2**8 (= 256) |
epochs | ~27 hours |
PERSISTENT_COMMITTEE_PERIOD |
2**11 (= 2,048) |
epochs | 9 days |
MAX_EPOCHS_PER_CROSSLINK |
2**6 (= 64) |
epochs | ~7 hours |
MIN_EPOCHS_TO_INACTIVITY_PENALTY |
2**2 (= 4) |
epochs | 25.6 minutes |
State list lengths
Name | Value | Unit | Duration |
---|---|---|---|
EPOCHS_PER_HISTORICAL_VECTOR |
2**16 (= 65,536) |
epochs | ~0.8 years |
EPOCHS_PER_SLASHINGS_VECTOR |
2**13 (= 8,192) |
epochs | ~36 days |
HISTORICAL_ROOTS_LIMIT |
2**24 (= 16,777,216) |
historical roots | ~26,131 years |
VALIDATOR_REGISTRY_LIMIT |
2**40 (= 1,099,511,627,776) |
validator spots |
Rewards and penalties
Name | Value |
---|---|
BASE_REWARD_FACTOR |
2**6 (= 64) |
WHISTLEBLOWER_REWARD_QUOTIENT |
2**9 (= 512) |
PROPOSER_REWARD_QUOTIENT |
2**3 (= 8) |
INACTIVITY_PENALTY_QUOTIENT |
2**25 (= 33,554,432) |
MIN_SLASHING_PENALTY_QUOTIENT |
2**5 (= 32) |
- The
INACTIVITY_PENALTY_QUOTIENT
equalsINVERSE_SQRT_E_DROP_TIME**2
whereINVERSE_SQRT_E_DROP_TIME := 2**12 epochs
(about 18 days) is the time it takes the inactivity penalty to reduce the balance of non-participating validators to about1/sqrt(e) ~= 60.6%
. Indeed, the balance retained by offline validators aftern
epochs is about(1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(n**2/2)
; so afterINVERSE_SQRT_E_DROP_TIME
epochs, it is roughly(1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(INACTIVITY_PENALTY_QUOTIENT/2) ~= 1/sqrt(e)
.
Max operations per block
Name | Value |
---|---|
MAX_PROPOSER_SLASHINGS |
2**4 (= 16) |
MAX_ATTESTER_SLASHINGS |
2**0 (= 1) |
MAX_ATTESTATIONS |
2**7 (= 128) |
MAX_DEPOSITS |
2**4 (= 16) |
MAX_VOLUNTARY_EXITS |
2**4 (= 16) |
MAX_TRANSFERS |
0 |
Signature domain types
The following types are defined, mapping into DomainType
(little endian):
Name | Value |
---|---|
DOMAIN_BEACON_PROPOSER |
0 |
DOMAIN_RANDAO |
1 |
DOMAIN_ATTESTATION |
2 |
DOMAIN_DEPOSIT |
3 |
DOMAIN_VOLUNTARY_EXIT |
4 |
DOMAIN_TRANSFER |
5 |
Containers
The following types are SimpleSerialize (SSZ) containers.
Note: The definitions are ordered topologically to facilitate execution of the spec.
Note: Fields missing in container instantiations default to their zero value.
Misc dependencies
Fork
class Fork(Container):
previous_version: Version
current_version: Version
epoch: Epoch # Epoch of latest fork
Checkpoint
class Checkpoint(Container):
epoch: Epoch
root: Hash
Validator
class Validator(Container):
pubkey: BLSPubkey
withdrawal_credentials: Hash # Commitment to pubkey for withdrawals and transfers
effective_balance: Gwei # Balance at stake
slashed: boolean
# Status epochs
activation_eligibility_epoch: Epoch # When criteria for activation were met
activation_epoch: Epoch
exit_epoch: Epoch
withdrawable_epoch: Epoch # When validator can withdraw or transfer funds
Crosslink
class Crosslink(Container):
shard: Shard
parent_root: Hash
# Crosslinking data
start_epoch: Epoch
end_epoch: Epoch
data_root: Hash
AttestationData
class AttestationData(Container):
# LMD GHOST vote
beacon_block_root: Hash
# FFG vote
source: Checkpoint
target: Checkpoint
# Crosslink vote
crosslink: Crosslink
AttestationDataAndCustodyBit
class AttestationDataAndCustodyBit(Container):
data: AttestationData
custody_bit: bit # Challengeable bit (SSZ-bool, 1 byte) for the custody of crosslink data
IndexedAttestation
class IndexedAttestation(Container):
custody_bit_0_indices: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE] # Indices with custody bit equal to 0
custody_bit_1_indices: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE] # Indices with custody bit equal to 1
data: AttestationData
signature: BLSSignature
PendingAttestation
class PendingAttestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
inclusion_delay: Slot
proposer_index: ValidatorIndex
Eth1Data
class Eth1Data(Container):
deposit_root: Hash
deposit_count: uint64
block_hash: Hash
HistoricalBatch
class HistoricalBatch(Container):
block_roots: Vector[Hash, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Hash, SLOTS_PER_HISTORICAL_ROOT]
DepositData
class DepositData(Container):
pubkey: BLSPubkey
withdrawal_credentials: Hash
amount: Gwei
signature: BLSSignature
CompactCommittee
class CompactCommittee(Container):
pubkeys: List[BLSPubkey, MAX_VALIDATORS_PER_COMMITTEE]
compact_validators: List[uint64, MAX_VALIDATORS_PER_COMMITTEE]
BeaconBlockHeader
class BeaconBlockHeader(Container):
slot: Slot
parent_root: Hash
state_root: Hash
body_root: Hash
signature: BLSSignature
Beacon operations
ProposerSlashing
class ProposerSlashing(Container):
proposer_index: ValidatorIndex
header_1: BeaconBlockHeader
header_2: BeaconBlockHeader
AttesterSlashing
class AttesterSlashing(Container):
attestation_1: IndexedAttestation
attestation_2: IndexedAttestation
Attestation
class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
custody_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
signature: BLSSignature
Deposit
class Deposit(Container):
proof: Vector[Hash, DEPOSIT_CONTRACT_TREE_DEPTH + 1] # Merkle path to deposit data list root
data: DepositData
VoluntaryExit
class VoluntaryExit(Container):
epoch: Epoch # Earliest epoch when voluntary exit can be processed
validator_index: ValidatorIndex
signature: BLSSignature
Transfer
class Transfer(Container):
sender: ValidatorIndex
recipient: ValidatorIndex
amount: Gwei
fee: Gwei
slot: Slot # Slot at which transfer must be processed
pubkey: BLSPubkey # Withdrawal pubkey
signature: BLSSignature # Signature checked against withdrawal pubkey
Beacon blocks
BeaconBlockBody
class BeaconBlockBody(Container):
randao_reveal: BLSSignature
eth1_data: Eth1Data # Eth1 data vote
graffiti: Bytes32 # Arbitrary data
# Operations
proposer_slashings: List[ProposerSlashing, MAX_PROPOSER_SLASHINGS]
attester_slashings: List[AttesterSlashing, MAX_ATTESTER_SLASHINGS]
attestations: List[Attestation, MAX_ATTESTATIONS]
deposits: List[Deposit, MAX_DEPOSITS]
voluntary_exits: List[VoluntaryExit, MAX_VOLUNTARY_EXITS]
transfers: List[Transfer, MAX_TRANSFERS]
BeaconBlock
class BeaconBlock(Container):
slot: Slot
parent_root: Hash
state_root: Hash
body: BeaconBlockBody
signature: BLSSignature
Beacon state
BeaconState
class BeaconState(Container):
# Versioning
genesis_time: uint64
slot: Slot
fork: Fork
# History
latest_block_header: BeaconBlockHeader
block_roots: Vector[Hash, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Hash, SLOTS_PER_HISTORICAL_ROOT]
historical_roots: List[Hash, HISTORICAL_ROOTS_LIMIT]
# Eth1
eth1_data: Eth1Data
eth1_data_votes: List[Eth1Data, SLOTS_PER_ETH1_VOTING_PERIOD]
eth1_deposit_index: uint64
# Registry
validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]
# Shuffling
start_shard: Shard
randao_mixes: Vector[Hash, EPOCHS_PER_HISTORICAL_VECTOR]
active_index_roots: Vector[Hash, EPOCHS_PER_HISTORICAL_VECTOR] # Active index digests for light clients
compact_committees_roots: Vector[Hash, EPOCHS_PER_HISTORICAL_VECTOR] # Committee digests for light clients
# Slashings
slashings: Vector[Gwei, EPOCHS_PER_SLASHINGS_VECTOR] # Per-epoch sums of slashed effective balances
# Attestations
previous_epoch_attestations: List[PendingAttestation, MAX_ATTESTATIONS * SLOTS_PER_EPOCH]
current_epoch_attestations: List[PendingAttestation, MAX_ATTESTATIONS * SLOTS_PER_EPOCH]
# Crosslinks
previous_crosslinks: Vector[Crosslink, SHARD_COUNT] # Previous epoch snapshot
current_crosslinks: Vector[Crosslink, SHARD_COUNT]
# Finality
justification_bits: Bitvector[JUSTIFICATION_BITS_LENGTH] # Bit set for every recent justified epoch
previous_justified_checkpoint: Checkpoint # Previous epoch snapshot
current_justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint
Helper functions
Note: The definitions below are for specification purposes and are not necessarily optimal implementations.
Math
integer_squareroot
def integer_squareroot(n: uint64) -> uint64:
"""
Return the largest integer ``x`` such that ``x**2 <= n``.
"""
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
xor
def xor(bytes_1: Bytes32, bytes_2: Bytes32) -> Bytes32:
"""
Return the exclusive-or of two 32-byte strings.
"""
return Bytes32(a ^ b for a, b in zip(bytes_1, bytes_2))
int_to_bytes
def int_to_bytes(n: uint64, length: uint64) -> bytes:
"""
Return the ``length``-byte serialization of ``n``.
"""
return n.to_bytes(length, ENDIANNESS)
bytes_to_int
def bytes_to_int(data: bytes) -> uint64:
"""
Return the integer deserialization of ``data``.
"""
return int.from_bytes(data, ENDIANNESS)
Crypto
hash
def hash(data: bytes) -> Hash
is SHA256.
hash_tree_root
def hash_tree_root(object: SSZSerializable) -> Hash
is a function for hashing objects into a single root by utilizing a hash tree structure, as defined in the SSZ spec.
signing_root
def signing_root(object: Container) -> Hash
is a function for computing signing messages, as defined in the SSZ spec.
bls_verify
bls_verify
is a function for verifying a BLS signature, as defined in the BLS Signature spec.
bls_verify_multiple
bls_verify_multiple
is a function for verifying a BLS signature constructed from multiple messages, as defined in the BLS Signature spec.
bls_aggregate_pubkeys
bls_aggregate_pubkeys
is a function for aggregating multiple BLS public keys into a single aggregate key, as defined in the BLS Signature spec.
Predicates
is_active_validator
def is_active_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is active.
"""
return validator.activation_epoch <= epoch < validator.exit_epoch
is_slashable_validator
def is_slashable_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is slashable.
"""
return (not validator.slashed) and (validator.activation_epoch <= epoch < validator.withdrawable_epoch)
is_slashable_attestation_data
def is_slashable_attestation_data(data_1: AttestationData, data_2: AttestationData) -> bool:
"""
Check if ``data_1`` and ``data_2`` are slashable according to Casper FFG rules.
"""
return (
# Double vote
(data_1 != data_2 and data_1.target.epoch == data_2.target.epoch) or
# Surround vote
(data_1.source.epoch < data_2.source.epoch and data_2.target.epoch < data_1.target.epoch)
)
is_valid_indexed_attestation
def is_valid_indexed_attestation(state: BeaconState, indexed_attestation: IndexedAttestation) -> bool:
"""
Check if ``indexed_attestation`` has valid indices and signature.
"""
bit_0_indices = indexed_attestation.custody_bit_0_indices
bit_1_indices = indexed_attestation.custody_bit_1_indices
# Verify no index has custody bit equal to 1 [to be removed in phase 1]
if not len(bit_1_indices) == 0:
return False
# Verify max number of indices
if not len(bit_0_indices) + len(bit_1_indices) <= MAX_VALIDATORS_PER_COMMITTEE:
return False
# Verify index sets are disjoint
if not len(set(bit_0_indices).intersection(bit_1_indices)) == 0:
return False
# Verify indices are sorted
if not (bit_0_indices == sorted(bit_0_indices) and bit_1_indices == sorted(bit_1_indices)):
return False
# Verify aggregate signature
if not bls_verify_multiple(
pubkeys=[
bls_aggregate_pubkeys([state.validators[i].pubkey for i in bit_0_indices]),
bls_aggregate_pubkeys([state.validators[i].pubkey for i in bit_1_indices]),
],
message_hashes=[
hash_tree_root(AttestationDataAndCustodyBit(data=indexed_attestation.data, custody_bit=0b0)),
hash_tree_root(AttestationDataAndCustodyBit(data=indexed_attestation.data, custody_bit=0b1)),
],
signature=indexed_attestation.signature,
domain=get_domain(state, DOMAIN_ATTESTATION, indexed_attestation.data.target.epoch),
):
return False
return True
is_valid_merkle_branch
def is_valid_merkle_branch(leaf: Hash, branch: Sequence[Hash], depth: uint64, index: uint64, root: Hash) -> bool:
"""
Check if ``leaf`` at ``index`` verifies against the Merkle ``root`` and ``branch``.
"""
value = leaf
for i in range(depth):
if index // (2**i) % 2:
value = hash(branch[i] + value)
else:
value = hash(value + branch[i])
return value == root
Misc
compute_shuffled_index
def compute_shuffled_index(index: ValidatorIndex, index_count: uint64, seed: Hash) -> ValidatorIndex:
"""
Return the shuffled validator index corresponding to ``seed`` (and ``index_count``).
"""
assert index < index_count
# Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
# See the 'generalized domain' algorithm on page 3
for current_round in range(SHUFFLE_ROUND_COUNT):
pivot = bytes_to_int(hash(seed + int_to_bytes(current_round, length=1))[0:8]) % index_count
flip = ValidatorIndex((pivot + index_count - index) % index_count)
position = max(index, flip)
source = hash(seed + int_to_bytes(current_round, length=1) + int_to_bytes(position // 256, length=4))
byte = source[(position % 256) // 8]
bit = (byte >> (position % 8)) % 2
index = flip if bit else index
return ValidatorIndex(index)
compute_committee
def compute_committee(indices: Sequence[ValidatorIndex],
seed: Hash,
index: uint64,
count: uint64) -> Sequence[ValidatorIndex]:
"""
Return the committee corresponding to ``indices``, ``seed``, ``index``, and committee ``count``.
"""
start = (len(indices) * index) // count
end = (len(indices) * (index + 1)) // count
return [indices[compute_shuffled_index(ValidatorIndex(i), len(indices), seed)] for i in range(start, end)]
compute_epoch_of_slot
def compute_epoch_of_slot(slot: Slot) -> Epoch:
"""
Return the epoch number of ``slot``.
"""
return Epoch(slot // SLOTS_PER_EPOCH)
compute_start_slot_of_epoch
def compute_start_slot_of_epoch(epoch: Epoch) -> Slot:
"""
Return the start slot of ``epoch``.
"""
return Slot(epoch * SLOTS_PER_EPOCH)
compute_activation_exit_epoch
def compute_activation_exit_epoch(epoch: Epoch) -> Epoch:
"""
Return the epoch during which validator activations and exits initiated in ``epoch`` take effect.
"""
return Epoch(epoch + 1 + ACTIVATION_EXIT_DELAY)
compute_domain
def compute_domain(domain_type: DomainType, fork_version: Version=Version()) -> Domain:
"""
Return the domain for the ``domain_type`` and ``fork_version``.
"""
return Domain(domain_type + fork_version)
Beacon state accessors
get_current_epoch
def get_current_epoch(state: BeaconState) -> Epoch:
"""
Return the current epoch.
"""
return compute_epoch_of_slot(state.slot)
get_previous_epoch
def get_previous_epoch(state: BeaconState) -> Epoch:
"""`
Return the previous epoch (unless the current epoch is ``GENESIS_EPOCH``).
"""
current_epoch = get_current_epoch(state)
return GENESIS_EPOCH if current_epoch == GENESIS_EPOCH else Epoch(current_epoch - 1)
get_block_root
def get_block_root(state: BeaconState, epoch: Epoch) -> Hash:
"""
Return the block root at the start of a recent ``epoch``.
"""
return get_block_root_at_slot(state, compute_start_slot_of_epoch(epoch))
get_block_root_at_slot
def get_block_root_at_slot(state: BeaconState, slot: Slot) -> Hash:
"""
Return the block root at a recent ``slot``.
"""
assert slot < state.slot <= slot + SLOTS_PER_HISTORICAL_ROOT
return state.block_roots[slot % SLOTS_PER_HISTORICAL_ROOT]
get_randao_mix
def get_randao_mix(state: BeaconState, epoch: Epoch) -> Hash:
"""
Return the randao mix at a recent ``epoch``.
"""
return state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR]
get_active_validator_indices
def get_active_validator_indices(state: BeaconState, epoch: Epoch) -> Sequence[ValidatorIndex]:
"""
Return the sequence of active validator indices at ``epoch``.
"""
return [ValidatorIndex(i) for i, v in enumerate(state.validators) if is_active_validator(v, epoch)]
get_validator_churn_limit
def get_validator_churn_limit(state: BeaconState) -> uint64:
"""
Return the validator churn limit for the current epoch.
"""
active_validator_indices = get_active_validator_indices(state, get_current_epoch(state))
return max(MIN_PER_EPOCH_CHURN_LIMIT, len(active_validator_indices) // CHURN_LIMIT_QUOTIENT)
get_seed
def get_seed(state: BeaconState, epoch: Epoch) -> Hash:
"""
Return the seed at ``epoch``.
"""
mix = get_randao_mix(state, Epoch(epoch + EPOCHS_PER_HISTORICAL_VECTOR - MIN_SEED_LOOKAHEAD - 1)) # Avoid underflow
active_index_root = state.active_index_roots[epoch % EPOCHS_PER_HISTORICAL_VECTOR]
return hash(mix + active_index_root + int_to_bytes(epoch, length=32))
get_committee_count
def get_committee_count(state: BeaconState, epoch: Epoch) -> uint64:
"""
Return the number of committees at ``epoch``.
"""
committees_per_slot = max(1, min(
SHARD_COUNT // SLOTS_PER_EPOCH,
len(get_active_validator_indices(state, epoch)) // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE,
))
return committees_per_slot * SLOTS_PER_EPOCH
get_crosslink_committee
def get_crosslink_committee(state: BeaconState, epoch: Epoch, shard: Shard) -> Sequence[ValidatorIndex]:
"""
Return the crosslink committee at ``epoch`` for ``shard``.
"""
return compute_committee(
indices=get_active_validator_indices(state, epoch),
seed=get_seed(state, epoch),
index=(shard + SHARD_COUNT - get_start_shard(state, epoch)) % SHARD_COUNT,
count=get_committee_count(state, epoch),
)
get_start_shard
def get_start_shard(state: BeaconState, epoch: Epoch) -> Shard:
"""
Return the start shard of the 0th committee at ``epoch``.
"""
assert epoch <= get_current_epoch(state) + 1
check_epoch = Epoch(get_current_epoch(state) + 1)
shard = Shard((state.start_shard + get_shard_delta(state, get_current_epoch(state))) % SHARD_COUNT)
while check_epoch > epoch:
check_epoch -= Epoch(1)
shard = Shard((shard + SHARD_COUNT - get_shard_delta(state, check_epoch)) % SHARD_COUNT)
return shard
get_shard_delta
def get_shard_delta(state: BeaconState, epoch: Epoch) -> uint64:
"""
Return the number of shards to increment ``state.start_shard`` at ``epoch``.
"""
return min(get_committee_count(state, epoch), SHARD_COUNT - SHARD_COUNT // SLOTS_PER_EPOCH)
get_beacon_proposer_index
def get_beacon_proposer_index(state: BeaconState) -> ValidatorIndex:
"""
Return the beacon proposer index at the current slot.
"""
epoch = get_current_epoch(state)
committees_per_slot = get_committee_count(state, epoch) // SLOTS_PER_EPOCH
offset = committees_per_slot * (state.slot % SLOTS_PER_EPOCH)
shard = Shard((get_start_shard(state, epoch) + offset) % SHARD_COUNT)
first_committee = get_crosslink_committee(state, epoch, shard)
MAX_RANDOM_BYTE = 2**8 - 1
seed = get_seed(state, epoch)
i = 0
while True:
candidate_index = first_committee[(epoch + i) % len(first_committee)]
random_byte = hash(seed + int_to_bytes(i // 32, length=8))[i % 32]
effective_balance = state.validators[candidate_index].effective_balance
if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:
return ValidatorIndex(candidate_index)
i += 1
get_attestation_data_slot
def get_attestation_data_slot(state: BeaconState, data: AttestationData) -> Slot:
"""
Return the slot corresponding to the attestation ``data``.
"""
committee_count = get_committee_count(state, data.target.epoch)
offset = (data.crosslink.shard + SHARD_COUNT - get_start_shard(state, data.target.epoch)) % SHARD_COUNT
return Slot(compute_start_slot_of_epoch(data.target.epoch) + offset // (committee_count // SLOTS_PER_EPOCH))
get_compact_committees_root
def get_compact_committees_root(state: BeaconState, epoch: Epoch) -> Hash:
"""
Return the compact committee root at ``epoch``.
"""
committees = [CompactCommittee() for _ in range(SHARD_COUNT)]
start_shard = get_start_shard(state, epoch)
for committee_number in range(get_committee_count(state, epoch)):
shard = Shard((start_shard + committee_number) % SHARD_COUNT)
for index in get_crosslink_committee(state, epoch, shard):
validator = state.validators[index]
committees[shard].pubkeys.append(validator.pubkey)
compact_balance = validator.effective_balance // EFFECTIVE_BALANCE_INCREMENT
# `index` (top 6 bytes) + `slashed` (16th bit) + `compact_balance` (bottom 15 bits)
compact_validator = uint64((index << 16) + (validator.slashed << 15) + compact_balance)
committees[shard].compact_validators.append(compact_validator)
return hash_tree_root(Vector[CompactCommittee, SHARD_COUNT](committees))
get_total_balance
def get_total_balance(state: BeaconState, indices: Set[ValidatorIndex]) -> Gwei:
"""
Return the combined effective balance of the ``indices``. (1 Gwei minimum to avoid divisions by zero.)
"""
return Gwei(max(1, sum([state.validators[index].effective_balance for index in indices])))
get_total_active_balance
def get_total_active_balance(state: BeaconState) -> Gwei:
"""
Return the combined effective balance of the active validators.
"""
return get_total_balance(state, set(get_active_validator_indices(state, get_current_epoch(state))))
get_domain
def get_domain(state: BeaconState, domain_type: DomainType, message_epoch: Epoch=None) -> Domain:
"""
Return the signature domain (fork version concatenated with domain type) of a message.
"""
epoch = get_current_epoch(state) if message_epoch is None else message_epoch
fork_version = state.fork.previous_version if epoch < state.fork.epoch else state.fork.current_version
return compute_domain(domain_type, fork_version)
get_indexed_attestation
def get_indexed_attestation(state: BeaconState, attestation: Attestation) -> IndexedAttestation:
"""
Return the indexed attestation corresponding to ``attestation``.
"""
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits)
custody_bit_1_indices = get_attesting_indices(state, attestation.data, attestation.custody_bits)
assert custody_bit_1_indices.issubset(attesting_indices)
custody_bit_0_indices = attesting_indices.difference(custody_bit_1_indices)
return IndexedAttestation(
custody_bit_0_indices=sorted(custody_bit_0_indices),
custody_bit_1_indices=sorted(custody_bit_1_indices),
data=attestation.data,
signature=attestation.signature,
)
get_attesting_indices
def get_attesting_indices(state: BeaconState,
data: AttestationData,
bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]) -> Set[ValidatorIndex]:
"""
Return the set of attesting indices corresponding to ``data`` and ``bits``.
"""
committee = get_crosslink_committee(state, data.target.epoch, data.crosslink.shard)
return set(index for i, index in enumerate(committee) if bits[i])
Beacon state mutators
increase_balance
def increase_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Increase the validator balance at index ``index`` by ``delta``.
"""
state.balances[index] += delta
decrease_balance
def decrease_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Decrease the validator balance at index ``index`` by ``delta``, with underflow protection.
"""
state.balances[index] = 0 if delta > state.balances[index] else state.balances[index] - delta
initiate_validator_exit
def initiate_validator_exit(state: BeaconState, index: ValidatorIndex) -> None:
"""
Initiate the exit of the validator with index ``index``.
"""
# Return if validator already initiated exit
validator = state.validators[index]
if validator.exit_epoch != FAR_FUTURE_EPOCH:
return
# Compute exit queue epoch
exit_epochs = [v.exit_epoch for v in state.validators if v.exit_epoch != FAR_FUTURE_EPOCH]
exit_queue_epoch = max(exit_epochs + [compute_activation_exit_epoch(get_current_epoch(state))])
exit_queue_churn = len([v for v in state.validators if v.exit_epoch == exit_queue_epoch])
if exit_queue_churn >= get_validator_churn_limit(state):
exit_queue_epoch += Epoch(1)
# Set validator exit epoch and withdrawable epoch
validator.exit_epoch = exit_queue_epoch
validator.withdrawable_epoch = Epoch(validator.exit_epoch + MIN_VALIDATOR_WITHDRAWABILITY_DELAY)
slash_validator
def slash_validator(state: BeaconState,
slashed_index: ValidatorIndex,
whistleblower_index: ValidatorIndex=None) -> None:
"""
Slash the validator with index ``slashed_index``.
"""
epoch = get_current_epoch(state)
initiate_validator_exit(state, slashed_index)
validator = state.validators[slashed_index]
validator.slashed = True
validator.withdrawable_epoch = max(validator.withdrawable_epoch, Epoch(epoch + EPOCHS_PER_SLASHINGS_VECTOR))
state.slashings[epoch % EPOCHS_PER_SLASHINGS_VECTOR] += validator.effective_balance
decrease_balance(state, slashed_index, validator.effective_balance // MIN_SLASHING_PENALTY_QUOTIENT)
# Apply proposer and whistleblower rewards
proposer_index = get_beacon_proposer_index(state)
if whistleblower_index is None:
whistleblower_index = proposer_index
whistleblower_reward = Gwei(validator.effective_balance // WHISTLEBLOWER_REWARD_QUOTIENT)
proposer_reward = Gwei(whistleblower_reward // PROPOSER_REWARD_QUOTIENT)
increase_balance(state, proposer_index, proposer_reward)
increase_balance(state, whistleblower_index, whistleblower_reward - proposer_reward)
Genesis
Before the Ethereum 2.0 genesis has been triggered, and for every Ethereum 1.0 block, let candidate_state = initialize_beacon_state_from_eth1(eth1_block_hash, eth1_timestamp, deposits)
where:
eth1_block_hash
is the hash of the Ethereum 1.0 blocketh1_timestamp
is the Unix timestamp corresponding toeth1_block_hash
deposits
is the sequence of all deposits, ordered chronologically, up to the block with hasheth1_block_hash
def initialize_beacon_state_from_eth1(eth1_block_hash: Hash,
eth1_timestamp: uint64,
deposits: Sequence[Deposit]) -> BeaconState:
state = BeaconState(
genesis_time=eth1_timestamp - eth1_timestamp % SECONDS_PER_DAY + 2 * SECONDS_PER_DAY,
eth1_data=Eth1Data(block_hash=eth1_block_hash, deposit_count=len(deposits)),
latest_block_header=BeaconBlockHeader(body_root=hash_tree_root(BeaconBlockBody())),
)
# Process deposits
leaves = list(map(lambda deposit: deposit.data, deposits))
for index, deposit in enumerate(deposits):
deposit_data_list = List[DepositData, 2**DEPOSIT_CONTRACT_TREE_DEPTH](*leaves[:index + 1])
state.eth1_data.deposit_root = hash_tree_root(deposit_data_list)
process_deposit(state, deposit)
# Process activations
for index, validator in enumerate(state.validators):
balance = state.balances[index]
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
if validator.effective_balance == MAX_EFFECTIVE_BALANCE:
validator.activation_eligibility_epoch = GENESIS_EPOCH
validator.activation_epoch = GENESIS_EPOCH
# Populate active_index_roots and compact_committees_roots
indices_list = List[ValidatorIndex, VALIDATOR_REGISTRY_LIMIT](get_active_validator_indices(state, GENESIS_EPOCH))
active_index_root = hash_tree_root(indices_list)
committee_root = get_compact_committees_root(state, GENESIS_EPOCH)
for index in range(EPOCHS_PER_HISTORICAL_VECTOR):
state.active_index_roots[index] = active_index_root
state.compact_committees_roots[index] = committee_root
return state
Genesis state
Let genesis_state = candidate_state
whenever is_valid_genesis_state(candidate_state) is True
for the first time.
def is_valid_genesis_state(state: BeaconState) -> bool:
if state.genesis_time < MIN_GENESIS_TIME:
return False
if len(get_active_validator_indices(state, GENESIS_EPOCH)) < MIN_GENESIS_ACTIVE_VALIDATOR_COUNT:
return False
return True
Note: The is_valid_genesis_state
function (including MIN_GENESIS_TIME
and MIN_GENESIS_ACTIVE_VALIDATOR_COUNT
) is a placeholder for testing. It has yet to be finalized by the community, and can be updated as necessary.
Genesis block
Let genesis_block = BeaconBlock(state_root=hash_tree_root(genesis_state))
.
Beacon chain state transition function
The post-state corresponding to a pre-state state
and a block block
is defined as state_transition(state, block)
. State transitions that trigger an unhandled exception (e.g. a failed assert
or an out-of-range list access) are considered invalid.
def state_transition(state: BeaconState, block: BeaconBlock, validate_state_root: bool=False) -> BeaconState:
# Process slots (including those with no blocks) since block
process_slots(state, block.slot)
# Process block
process_block(state, block)
# Validate state root (`validate_state_root == True` in production)
if validate_state_root:
assert block.state_root == hash_tree_root(state)
# Return post-state
return state
def process_slots(state: BeaconState, slot: Slot) -> None:
assert state.slot <= slot
while state.slot < slot:
process_slot(state)
# Process epoch on the start slot of the next epoch
if (state.slot + 1) % SLOTS_PER_EPOCH == 0:
process_epoch(state)
state.slot += Slot(1)
def process_slot(state: BeaconState) -> None:
# Cache state root
previous_state_root = hash_tree_root(state)
state.state_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_state_root
# Cache latest block header state root
if state.latest_block_header.state_root == Bytes32():
state.latest_block_header.state_root = previous_state_root
# Cache block root
previous_block_root = signing_root(state.latest_block_header)
state.block_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_block_root
Epoch processing
Note: The # @LabelHere
lines below are placeholders to show that code will be inserted here in a future phase.
def process_epoch(state: BeaconState) -> None:
process_justification_and_finalization(state)
process_crosslinks(state)
process_rewards_and_penalties(state)
process_registry_updates(state)
# @process_reveal_deadlines
# @process_challenge_deadlines
process_slashings(state)
process_final_updates(state)
# @after_process_final_updates
Helper functions
def get_matching_source_attestations(state: BeaconState, epoch: Epoch) -> Sequence[PendingAttestation]:
assert epoch in (get_previous_epoch(state), get_current_epoch(state))
return state.current_epoch_attestations if epoch == get_current_epoch(state) else state.previous_epoch_attestations
def get_matching_target_attestations(state: BeaconState, epoch: Epoch) -> Sequence[PendingAttestation]:
return [
a for a in get_matching_source_attestations(state, epoch)
if a.data.target.root == get_block_root(state, epoch)
]
def get_matching_head_attestations(state: BeaconState, epoch: Epoch) -> Sequence[PendingAttestation]:
return [
a for a in get_matching_source_attestations(state, epoch)
if a.data.beacon_block_root == get_block_root_at_slot(state, get_attestation_data_slot(state, a.data))
]
def get_unslashed_attesting_indices(state: BeaconState,
attestations: Sequence[PendingAttestation]) -> Set[ValidatorIndex]:
output = set() # type: Set[ValidatorIndex]
for a in attestations:
output = output.union(get_attesting_indices(state, a.data, a.aggregation_bits))
return set(filter(lambda index: not state.validators[index].slashed, list(output)))
def get_attesting_balance(state: BeaconState, attestations: Sequence[PendingAttestation]) -> Gwei:
return get_total_balance(state, get_unslashed_attesting_indices(state, attestations))
def get_winning_crosslink_and_attesting_indices(state: BeaconState,
epoch: Epoch,
shard: Shard) -> Tuple[Crosslink, Set[ValidatorIndex]]:
attestations = [a for a in get_matching_source_attestations(state, epoch) if a.data.crosslink.shard == shard]
crosslinks = list(filter(
lambda c: hash_tree_root(state.current_crosslinks[shard]) in (c.parent_root, hash_tree_root(c)),
[a.data.crosslink for a in attestations]
))
# Winning crosslink has the crosslink data root with the most balance voting for it (ties broken lexicographically)
winning_crosslink = max(crosslinks, key=lambda c: (
get_attesting_balance(state, [a for a in attestations if a.data.crosslink == c]), c.data_root
), default=Crosslink())
winning_attestations = [a for a in attestations if a.data.crosslink == winning_crosslink]
return winning_crosslink, get_unslashed_attesting_indices(state, winning_attestations)
Justification and finalization
def process_justification_and_finalization(state: BeaconState) -> None:
if get_current_epoch(state) <= GENESIS_EPOCH + 1:
return
previous_epoch = get_previous_epoch(state)
current_epoch = get_current_epoch(state)
old_previous_justified_checkpoint = state.previous_justified_checkpoint
old_current_justified_checkpoint = state.current_justified_checkpoint
# Process justifications
state.previous_justified_checkpoint = state.current_justified_checkpoint
state.justification_bits[1:] = state.justification_bits[:-1]
state.justification_bits[0] = 0b0
matching_target_attestations = get_matching_target_attestations(state, previous_epoch) # Previous epoch
if get_attesting_balance(state, matching_target_attestations) * 3 >= get_total_active_balance(state) * 2:
state.current_justified_checkpoint = Checkpoint(epoch=previous_epoch,
root=get_block_root(state, previous_epoch))
state.justification_bits[1] = 0b1
matching_target_attestations = get_matching_target_attestations(state, current_epoch) # Current epoch
if get_attesting_balance(state, matching_target_attestations) * 3 >= get_total_active_balance(state) * 2:
state.current_justified_checkpoint = Checkpoint(epoch=current_epoch,
root=get_block_root(state, current_epoch))
state.justification_bits[0] = 0b1
# Process finalizations
bits = state.justification_bits
# The 2nd/3rd/4th most recent epochs are justified, the 2nd using the 4th as source
if all(bits[1:4]) and old_previous_justified_checkpoint.epoch + 3 == current_epoch:
state.finalized_checkpoint = old_previous_justified_checkpoint
# The 2nd/3rd most recent epochs are justified, the 2nd using the 3rd as source
if all(bits[1:3]) and old_previous_justified_checkpoint.epoch + 2 == current_epoch:
state.finalized_checkpoint = old_previous_justified_checkpoint
# The 1st/2nd/3rd most recent epochs are justified, the 1st using the 3rd as source
if all(bits[0:3]) and old_current_justified_checkpoint.epoch + 2 == current_epoch:
state.finalized_checkpoint = old_current_justified_checkpoint
# The 1st/2nd most recent epochs are justified, the 1st using the 2nd as source
if all(bits[0:2]) and old_current_justified_checkpoint.epoch + 1 == current_epoch:
state.finalized_checkpoint = old_current_justified_checkpoint
Crosslinks
def process_crosslinks(state: BeaconState) -> None:
state.previous_crosslinks = [c for c in state.current_crosslinks]
for epoch in (get_previous_epoch(state), get_current_epoch(state)):
for offset in range(get_committee_count(state, epoch)):
shard = Shard((get_start_shard(state, epoch) + offset) % SHARD_COUNT)
crosslink_committee = set(get_crosslink_committee(state, epoch, shard))
winning_crosslink, attesting_indices = get_winning_crosslink_and_attesting_indices(state, epoch, shard)
if 3 * get_total_balance(state, attesting_indices) >= 2 * get_total_balance(state, crosslink_committee):
state.current_crosslinks[shard] = winning_crosslink
Rewards and penalties
def get_base_reward(state: BeaconState, index: ValidatorIndex) -> Gwei:
total_balance = get_total_active_balance(state)
effective_balance = state.validators[index].effective_balance
return Gwei(effective_balance * BASE_REWARD_FACTOR // integer_squareroot(total_balance) // BASE_REWARDS_PER_EPOCH)
def get_attestation_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
previous_epoch = get_previous_epoch(state)
total_balance = get_total_active_balance(state)
rewards = [Gwei(0) for _ in range(len(state.validators))]
penalties = [Gwei(0) for _ in range(len(state.validators))]
eligible_validator_indices = [
ValidatorIndex(index) for index, v in enumerate(state.validators)
if is_active_validator(v, previous_epoch) or (v.slashed and previous_epoch + 1 < v.withdrawable_epoch)
]
# Micro-incentives for matching FFG source, FFG target, and head
matching_source_attestations = get_matching_source_attestations(state, previous_epoch)
matching_target_attestations = get_matching_target_attestations(state, previous_epoch)
matching_head_attestations = get_matching_head_attestations(state, previous_epoch)
for attestations in (matching_source_attestations, matching_target_attestations, matching_head_attestations):
unslashed_attesting_indices = get_unslashed_attesting_indices(state, attestations)
attesting_balance = get_total_balance(state, unslashed_attesting_indices)
for index in eligible_validator_indices:
if index in unslashed_attesting_indices:
rewards[index] += get_base_reward(state, index) * attesting_balance // total_balance
else:
penalties[index] += get_base_reward(state, index)
# Proposer and inclusion delay micro-rewards
for index in get_unslashed_attesting_indices(state, matching_source_attestations):
attestation = min([
a for a in matching_source_attestations
if index in get_attesting_indices(state, a.data, a.aggregation_bits)
], key=lambda a: a.inclusion_delay)
proposer_reward = Gwei(get_base_reward(state, index) // PROPOSER_REWARD_QUOTIENT)
rewards[attestation.proposer_index] += proposer_reward
max_attester_reward = get_base_reward(state, index) - proposer_reward
rewards[index] += Gwei(
max_attester_reward
* (SLOTS_PER_EPOCH + MIN_ATTESTATION_INCLUSION_DELAY - attestation.inclusion_delay)
// SLOTS_PER_EPOCH
)
# Inactivity penalty
finality_delay = previous_epoch - state.finalized_checkpoint.epoch
if finality_delay > MIN_EPOCHS_TO_INACTIVITY_PENALTY:
matching_target_attesting_indices = get_unslashed_attesting_indices(state, matching_target_attestations)
for index in eligible_validator_indices:
penalties[index] += Gwei(BASE_REWARDS_PER_EPOCH * get_base_reward(state, index))
if index not in matching_target_attesting_indices:
penalties[index] += Gwei(
state.validators[index].effective_balance * finality_delay // INACTIVITY_PENALTY_QUOTIENT
)
return rewards, penalties
def get_crosslink_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
rewards = [Gwei(0) for _ in range(len(state.validators))]
penalties = [Gwei(0) for _ in range(len(state.validators))]
epoch = get_previous_epoch(state)
for offset in range(get_committee_count(state, epoch)):
shard = Shard((get_start_shard(state, epoch) + offset) % SHARD_COUNT)
crosslink_committee = set(get_crosslink_committee(state, epoch, shard))
winning_crosslink, attesting_indices = get_winning_crosslink_and_attesting_indices(state, epoch, shard)
attesting_balance = get_total_balance(state, attesting_indices)
committee_balance = get_total_balance(state, crosslink_committee)
for index in crosslink_committee:
base_reward = get_base_reward(state, index)
if index in attesting_indices:
rewards[index] += base_reward * attesting_balance // committee_balance
else:
penalties[index] += base_reward
return rewards, penalties
def process_rewards_and_penalties(state: BeaconState) -> None:
if get_current_epoch(state) == GENESIS_EPOCH:
return
rewards1, penalties1 = get_attestation_deltas(state)
rewards2, penalties2 = get_crosslink_deltas(state)
for index in range(len(state.validators)):
increase_balance(state, ValidatorIndex(index), rewards1[index] + rewards2[index])
decrease_balance(state, ValidatorIndex(index), penalties1[index] + penalties2[index])
Registry updates
def process_registry_updates(state: BeaconState) -> None:
# Process activation eligibility and ejections
for index, validator in enumerate(state.validators):
if (
validator.activation_eligibility_epoch == FAR_FUTURE_EPOCH
and validator.effective_balance == MAX_EFFECTIVE_BALANCE
):
validator.activation_eligibility_epoch = get_current_epoch(state)
if is_active_validator(validator, get_current_epoch(state)) and validator.effective_balance <= EJECTION_BALANCE:
initiate_validator_exit(state, ValidatorIndex(index))
# Queue validators eligible for activation and not dequeued for activation prior to finalized epoch
activation_queue = sorted([
index for index, validator in enumerate(state.validators)
if validator.activation_eligibility_epoch != FAR_FUTURE_EPOCH
and validator.activation_epoch >= compute_activation_exit_epoch(state.finalized_checkpoint.epoch)
], key=lambda index: state.validators[index].activation_eligibility_epoch)
# Dequeued validators for activation up to churn limit (without resetting activation epoch)
for index in activation_queue[:get_validator_churn_limit(state)]:
validator = state.validators[index]
if validator.activation_epoch == FAR_FUTURE_EPOCH:
validator.activation_epoch = compute_activation_exit_epoch(get_current_epoch(state))
Slashings
def process_slashings(state: BeaconState) -> None:
epoch = get_current_epoch(state)
total_balance = get_total_active_balance(state)
for index, validator in enumerate(state.validators):
if validator.slashed and epoch + EPOCHS_PER_SLASHINGS_VECTOR // 2 == validator.withdrawable_epoch:
increment = EFFECTIVE_BALANCE_INCREMENT # Factored out from penalty numerator to avoid uint64 overflow
penalty_numerator = validator.effective_balance // increment * min(sum(state.slashings) * 3, total_balance)
penalty = penalty_numerator // total_balance * increment
decrease_balance(state, ValidatorIndex(index), penalty)
Final updates
def process_final_updates(state: BeaconState) -> None:
current_epoch = get_current_epoch(state)
next_epoch = Epoch(current_epoch + 1)
# Reset eth1 data votes
if (state.slot + 1) % SLOTS_PER_ETH1_VOTING_PERIOD == 0:
state.eth1_data_votes = []
# Update effective balances with hysteresis
for index, validator in enumerate(state.validators):
balance = state.balances[index]
HALF_INCREMENT = EFFECTIVE_BALANCE_INCREMENT // 2
if balance < validator.effective_balance or validator.effective_balance + 3 * HALF_INCREMENT < balance:
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
# Update start shard
state.start_shard = Shard((state.start_shard + get_shard_delta(state, current_epoch)) % SHARD_COUNT)
# Set active index root
index_epoch = Epoch(next_epoch + ACTIVATION_EXIT_DELAY)
index_root_position = index_epoch % EPOCHS_PER_HISTORICAL_VECTOR
indices_list = List[ValidatorIndex, VALIDATOR_REGISTRY_LIMIT](get_active_validator_indices(state, index_epoch))
state.active_index_roots[index_root_position] = hash_tree_root(indices_list)
# Set committees root
committee_root_position = next_epoch % EPOCHS_PER_HISTORICAL_VECTOR
state.compact_committees_roots[committee_root_position] = get_compact_committees_root(state, next_epoch)
# Reset slashings
state.slashings[next_epoch % EPOCHS_PER_SLASHINGS_VECTOR] = Gwei(0)
# Set randao mix
state.randao_mixes[next_epoch % EPOCHS_PER_HISTORICAL_VECTOR] = get_randao_mix(state, current_epoch)
# Set historical root accumulator
if next_epoch % (SLOTS_PER_HISTORICAL_ROOT // SLOTS_PER_EPOCH) == 0:
historical_batch = HistoricalBatch(block_roots=state.block_roots, state_roots=state.state_roots)
state.historical_roots.append(hash_tree_root(historical_batch))
# Rotate current/previous epoch attestations
state.previous_epoch_attestations = state.current_epoch_attestations
state.current_epoch_attestations = []
Block processing
def process_block(state: BeaconState, block: BeaconBlock) -> None:
process_block_header(state, block)
process_randao(state, block.body)
process_eth1_data(state, block.body)
process_operations(state, block.body)
Block header
def process_block_header(state: BeaconState, block: BeaconBlock) -> None:
# Verify that the slots match
assert block.slot == state.slot
# Verify that the parent matches
assert block.parent_root == signing_root(state.latest_block_header)
# Save current block as the new latest block
state.latest_block_header = BeaconBlockHeader(
slot=block.slot,
parent_root=block.parent_root,
# state_root: zeroed, overwritten in the next `process_slot` call
body_root=hash_tree_root(block.body),
# signature is always zeroed
)
# Verify proposer is not slashed
proposer = state.validators[get_beacon_proposer_index(state)]
assert not proposer.slashed
# Verify proposer signature
assert bls_verify(proposer.pubkey, signing_root(block), block.signature, get_domain(state, DOMAIN_BEACON_PROPOSER))
RANDAO
def process_randao(state: BeaconState, body: BeaconBlockBody) -> None:
epoch = get_current_epoch(state)
# Verify RANDAO reveal
proposer = state.validators[get_beacon_proposer_index(state)]
assert bls_verify(proposer.pubkey, hash_tree_root(epoch), body.randao_reveal, get_domain(state, DOMAIN_RANDAO))
# Mix in RANDAO reveal
mix = xor(get_randao_mix(state, epoch), hash(body.randao_reveal))
state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR] = mix
Eth1 data
def process_eth1_data(state: BeaconState, body: BeaconBlockBody) -> None:
state.eth1_data_votes.append(body.eth1_data)
if state.eth1_data_votes.count(body.eth1_data) * 2 > SLOTS_PER_ETH1_VOTING_PERIOD:
state.eth1_data = body.eth1_data
Operations
def process_operations(state: BeaconState, body: BeaconBlockBody) -> None:
# Verify that outstanding deposits are processed up to the maximum number of deposits
assert len(body.deposits) == min(MAX_DEPOSITS, state.eth1_data.deposit_count - state.eth1_deposit_index)
# Verify that there are no duplicate transfers
assert len(body.transfers) == len(set(body.transfers))
for operations, function in (
(body.proposer_slashings, process_proposer_slashing),
(body.attester_slashings, process_attester_slashing),
(body.attestations, process_attestation),
(body.deposits, process_deposit),
(body.voluntary_exits, process_voluntary_exit),
(body.transfers, process_transfer),
):
for operation in operations:
function(state, operation)
Proposer slashings
def process_proposer_slashing(state: BeaconState, proposer_slashing: ProposerSlashing) -> None:
proposer = state.validators[proposer_slashing.proposer_index]
# Verify that the epoch is the same
assert (compute_epoch_of_slot(proposer_slashing.header_1.slot)
== compute_epoch_of_slot(proposer_slashing.header_2.slot))
# But the headers are different
assert proposer_slashing.header_1 != proposer_slashing.header_2
# Check proposer is slashable
assert is_slashable_validator(proposer, get_current_epoch(state))
# Signatures are valid
for header in (proposer_slashing.header_1, proposer_slashing.header_2):
domain = get_domain(state, DOMAIN_BEACON_PROPOSER, compute_epoch_of_slot(header.slot))
assert bls_verify(proposer.pubkey, signing_root(header), header.signature, domain)
slash_validator(state, proposer_slashing.proposer_index)
Attester slashings
def process_attester_slashing(state: BeaconState, attester_slashing: AttesterSlashing) -> None:
attestation_1 = attester_slashing.attestation_1
attestation_2 = attester_slashing.attestation_2
assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
assert is_valid_indexed_attestation(state, attestation_1)
assert is_valid_indexed_attestation(state, attestation_2)
slashed_any = False
attesting_indices_1 = attestation_1.custody_bit_0_indices + attestation_1.custody_bit_1_indices
attesting_indices_2 = attestation_2.custody_bit_0_indices + attestation_2.custody_bit_1_indices
for index in sorted(set(attesting_indices_1).intersection(attesting_indices_2)):
if is_slashable_validator(state.validators[index], get_current_epoch(state)):
slash_validator(state, index)
slashed_any = True
assert slashed_any
Attestations
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
data = attestation.data
assert data.crosslink.shard < SHARD_COUNT
assert data.target.epoch in (get_previous_epoch(state), get_current_epoch(state))
attestation_slot = get_attestation_data_slot(state, data)
assert attestation_slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot <= attestation_slot + SLOTS_PER_EPOCH
pending_attestation = PendingAttestation(
data=data,
aggregation_bits=attestation.aggregation_bits,
inclusion_delay=state.slot - attestation_slot,
proposer_index=get_beacon_proposer_index(state),
)
if data.target.epoch == get_current_epoch(state):
assert data.source == state.current_justified_checkpoint
parent_crosslink = state.current_crosslinks[data.crosslink.shard]
state.current_epoch_attestations.append(pending_attestation)
else:
assert data.source == state.previous_justified_checkpoint
parent_crosslink = state.previous_crosslinks[data.crosslink.shard]
state.previous_epoch_attestations.append(pending_attestation)
# Check crosslink against expected parent crosslink
assert data.crosslink.parent_root == hash_tree_root(parent_crosslink)
assert data.crosslink.start_epoch == parent_crosslink.end_epoch
assert data.crosslink.end_epoch == min(data.target.epoch, parent_crosslink.end_epoch + MAX_EPOCHS_PER_CROSSLINK)
assert data.crosslink.data_root == Bytes32() # [to be removed in phase 1]
# Check signature
assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
Deposits
def process_deposit(state: BeaconState, deposit: Deposit) -> None:
# Verify the Merkle branch
assert is_valid_merkle_branch(
leaf=hash_tree_root(deposit.data),
branch=deposit.proof,
depth=DEPOSIT_CONTRACT_TREE_DEPTH + 1, # Add 1 for the `List` length mix-in
index=state.eth1_deposit_index,
root=state.eth1_data.deposit_root,
)
# Deposits must be processed in order
state.eth1_deposit_index += 1
pubkey = deposit.data.pubkey
amount = deposit.data.amount
validator_pubkeys = [v.pubkey for v in state.validators]
if pubkey not in validator_pubkeys:
# Verify the deposit signature (proof of possession) for new validators.
# Note: The deposit contract does not check signatures.
# Note: Deposits are valid across forks, thus the deposit domain is retrieved directly from `compute_domain`.
domain = compute_domain(DOMAIN_DEPOSIT)
if not bls_verify(pubkey, signing_root(deposit.data), deposit.data.signature, domain):
return
# Add validator and balance entries
state.validators.append(Validator(
pubkey=pubkey,
withdrawal_credentials=deposit.data.withdrawal_credentials,
activation_eligibility_epoch=FAR_FUTURE_EPOCH,
activation_epoch=FAR_FUTURE_EPOCH,
exit_epoch=FAR_FUTURE_EPOCH,
withdrawable_epoch=FAR_FUTURE_EPOCH,
effective_balance=min(amount - amount % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE),
))
state.balances.append(amount)
else:
# Increase balance by deposit amount
index = ValidatorIndex(validator_pubkeys.index(pubkey))
increase_balance(state, index, amount)
Voluntary exits
def process_voluntary_exit(state: BeaconState, exit: VoluntaryExit) -> None:
validator = state.validators[exit.validator_index]
# Verify the validator is active
assert is_active_validator(validator, get_current_epoch(state))
# Verify the validator has not yet exited
assert validator.exit_epoch == FAR_FUTURE_EPOCH
# Exits must specify an epoch when they become valid; they are not valid before then
assert get_current_epoch(state) >= exit.epoch
# Verify the validator has been active long enough
assert get_current_epoch(state) >= validator.activation_epoch + PERSISTENT_COMMITTEE_PERIOD
# Verify signature
domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, exit.epoch)
assert bls_verify(validator.pubkey, signing_root(exit), exit.signature, domain)
# Initiate exit
initiate_validator_exit(state, exit.validator_index)
Transfers
def process_transfer(state: BeaconState, transfer: Transfer) -> None:
# Verify the balance the covers amount and fee (with overflow protection)
assert state.balances[transfer.sender] >= max(transfer.amount + transfer.fee, transfer.amount, transfer.fee)
# A transfer is valid in only one slot
assert state.slot == transfer.slot
# Sender must satisfy at least one of the following:
assert (
# 1) Never have been eligible for activation
state.validators[transfer.sender].activation_eligibility_epoch == FAR_FUTURE_EPOCH or
# 2) Be withdrawable
get_current_epoch(state) >= state.validators[transfer.sender].withdrawable_epoch or
# 3) Have a balance of at least MAX_EFFECTIVE_BALANCE after the transfer
state.balances[transfer.sender] >= transfer.amount + transfer.fee + MAX_EFFECTIVE_BALANCE
)
# Verify that the pubkey is valid
assert state.validators[transfer.sender].withdrawal_credentials == BLS_WITHDRAWAL_PREFIX + hash(transfer.pubkey)[1:]
# Verify that the signature is valid
assert bls_verify(transfer.pubkey, signing_root(transfer), transfer.signature, get_domain(state, DOMAIN_TRANSFER))
# Process the transfer
decrease_balance(state, transfer.sender, transfer.amount + transfer.fee)
increase_balance(state, transfer.recipient, transfer.amount)
increase_balance(state, get_beacon_proposer_index(state), transfer.fee)
# Verify balances are not dust
assert not (0 < state.balances[transfer.sender] < MIN_DEPOSIT_AMOUNT)
assert not (0 < state.balances[transfer.recipient] < MIN_DEPOSIT_AMOUNT)