2019-10-12 03:05:08 +00:00
# Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data
**Notice**: This document is a work-in-progress for researchers and implementers.
## Table of contents
<!-- TOC -->
- [Ethereum 2.0 Phase 1 -- Shard Data Chains ](#ethereum-20-phase-1----shard-data-chains )
- [Table of contents ](#table-of-contents )
- [Introduction ](#introduction )
- [Configuration ](#configuration )
- [Misc ](#misc )
- [Containers ](#containers )
2019-10-12 14:59:51 +00:00
- [Helpers ](#helpers )
2019-10-12 03:05:08 +00:00
- [Beacon Chain Changes ](#beacon-chain-changes )
- [New state variables ](#new-state-variables )
2019-10-13 06:52:51 +00:00
- [New block data structures ](#new-block-data-structures )
2019-10-12 14:59:51 +00:00
- [Attestation processing ](#attestation-processing )
2019-10-13 06:52:51 +00:00
- [Light client signature processing)(#light-client-signature-processing)
2019-10-12 14:59:51 +00:00
- [Epoch transition ](#epoch-transition )
- [Fraud proofs ](#fraud-proofs )
- [Honest persistent committee member behavior ](#honest-persistent-committee-member-behavior )
2019-10-12 03:05:08 +00:00
<!-- /TOC -->
## Introduction
This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0.
## Configuration
### Misc
2019-10-13 06:52:51 +00:00
| Name | Value | Unit | Duration |
| - | - | - | - |
2019-10-12 03:05:08 +00:00
| `MAX_SHARDS` | `2**10` (= 1024) |
| `ACTIVE_SHARDS` | `2**6` (= 64) |
| `SHARD_ROOT_HISTORY_LENGTH` | `2**15` (= 32,768) |
2019-10-13 06:52:51 +00:00
| `MAX_CATCHUP` | `2**5` (= 32) | slots | 3.2 min |
| `ONLINE_PERIOD` | `2**3` (= 8) | epochs | ~51 min |
| `LIGHT_CLIENT_COMMITTEE_SIZE` | `2**7` (= 128) |
| `LIGHT_CLIENT_COMMITTEE_PERIOD` | `2**8` (= 256) | epochs | ~29 hours |
2019-10-12 03:05:08 +00:00
## Containers
### `AttestationData`
```python
class AttestationData(Container):
# Slot
slot: Slot
# LMD GHOST vote
beacon_block_root: Hash
# FFG vote
source: Checkpoint
target: Checkpoint
# Shard data roots
shard_data_roots: List[Hash, MAX_CATCHUP]
# Intermediate state roots
shard_state_roots: List[Hash, MAX_CATCHUP]
2019-10-12 14:59:51 +00:00
# Index
index: uint64
2019-10-12 03:05:08 +00:00
```
### `Attestation`
```python
class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
custody_bits: List[Bitlist[MAX_VALIDATORS_PER_COMMITTEE], MAX_CATCHUP]
signature: BLSSignature
```
2019-10-13 06:52:51 +00:00
### `CompactCommittee`
```python
class CompactCommittee(Container):
pubkeys: List[BLSPubkey, MAX_VALIDATORS_PER_COMMITTEE]
compact_validators: List[uint64, MAX_VALIDATORS_PER_COMMITTEE]
```
2019-10-12 14:59:51 +00:00
## Helpers
### `get_online_validators`
```python
def get_online_indices(state: BeaconState) -> Set[ValidatorIndex]:
active_validators = get_active_validator_indices(state, get_current_epoch(state))
return set([i for i in active_validators if state.online_countdown[i] != 0])
```
### `get_shard_state_root`
```python
def get_shard_state_root(state: BeaconState, shard: Shard) -> Hash:
return state.shard_state_roots[shard][-1]
```
2019-10-13 06:52:51 +00:00
### `pack_compact_validator`
```python
def pack_compact_validator(index: int, slashed: bool, balance_in_increments: int) -> int:
"""
Creates a compact validator object representing index, slashed status, and compressed balance.
Takes as input balance-in-increments (// EFFECTIVE_BALANCE_INCREMENT) to preserve symmetry with
the unpacking function.
"""
return (index < < 16 ) + ( slashed < < 15 ) + balance_in_increments
```
### `unpack_compact_validator`
```python
def unpack_compact_validator(compact_validator: int) -> Tuple[int, bool, int]:
"""
Returns validator index, slashed, balance // EFFECTIVE_BALANCE_INCREMENT
"""
return compact_validator >> 16, bool((compact_validator >> 15) % 2), compact_validator & (2**15 - 1)
```
### `committee_to_compact_committee`
```python
def committee_to_compact_committee(state: BeaconState, committee: Sequence[ValidatorIndex]) -> CompactCommittee:
"""
Given a state and a list of validator indices, outputs the CompactCommittee representing them.
"""
validators = [state.validators[i] for i in committee]
compact_validators = [
pack_compact_validator(i, v.slashed, v.effective_balance // EFFECTIVE_BALANCE_INCREMENT)
for i, v in zip(committee, validators)
]
pubkeys = [v.pubkey for v in validators]
return CompactCommittee(pubkeys=pubkeys, compact_validators=compact_validators)
```
2019-10-12 03:05:08 +00:00
## Beacon Chain Changes
### New state variables
```
2019-10-12 14:59:51 +00:00
shard_state_roots: Vector[List[Hash, MAX_CATCHUP], MAX_SHARDS]
2019-10-12 03:05:08 +00:00
shard_next_slot: Vector[Slot, MAX_SHARDS]
2019-10-12 14:59:51 +00:00
online_countdown: Bytes[VALIDATOR_REGISTRY_LIMIT]
2019-10-13 06:52:51 +00:00
current_light_committee: CompactCommittee
next_light_committee: CompactCommittee
```
### New block data structures
```
light_client_signature_bitfield: Bitlist[LIGHT_CLIENT_COMMITTEE_SIZE]
light_client_signature: BLSSignature
2019-10-12 03:05:08 +00:00
```
### Attestation processing
```python
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
data = attestation.data
2019-10-12 14:59:51 +00:00
assert data.index < ACTIVE_SHARDS
shard = (data.index + get_start_shard(state, data.slot)) % ACTIVE_SHARDS
2019-10-12 03:05:08 +00:00
# Signature check
2019-10-12 14:59:51 +00:00
committee = get_crosslink_committee(state, get_current_epoch(state), shard)
2019-10-12 03:05:08 +00:00
for bits in attestation.custody_bits + [attestation.aggregation_bits]:
assert bits == len(committee)
# Check signature
assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))
2019-10-12 14:59:51 +00:00
# Get attesting indices
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits)
2019-10-12 03:05:08 +00:00
# Type 1: on-time attestations
if data.custody_bits != []:
# Correct start slot
2019-10-12 14:59:51 +00:00
assert data.slot == state.shard_next_slot[shard]
2019-10-12 03:05:08 +00:00
# Correct data root count
assert len(data.shard_data_roots) == len(attestation.custody_bits) == len(data.shard_state_roots) == min(state.slot - data.slot, MAX_CATCHUP)
# Correct parent block root
assert data.beacon_block_root == get_block_root_at_slot(state, state.slot - 1)
# Apply
online_indices = get_online_indices(state)
2019-10-12 14:59:51 +00:00
if get_total_balance(state, online_indices.intersection(attesting_indices)) * 3 >= get_total_balance(state, online_indices) * 2:
state.shard_state_roots[shard] = data.shard_state_roots
state.shard_next_slot[shard] += len(data.shard_data_roots)
2019-10-12 03:05:08 +00:00
# Type 2: delayed attestations
else:
assert slot_to_epoch(data.slot) in (get_current_epoch(state), get_previous_epoch(state))
assert len(data.shard_data_roots) == len(data.intermediate_state_roots) == 0
2019-10-12 14:59:51 +00:00
for index in attesting_indices:
online_countdown[index] = ONLINE_PERIOD
2019-10-12 03:05:08 +00:00
pending_attestation = PendingAttestation(
slot=data.slot,
2019-10-12 14:59:51 +00:00
shard=shard,
2019-10-12 03:05:08 +00:00
aggregation_bits=attestation.aggregation_bits,
inclusion_delay=state.slot - attestation_slot,
proposer_index=get_beacon_proposer_index(state),
)
if data.target.epoch == get_current_epoch(state):
assert data.source == state.current_justified_checkpoint
state.current_epoch_attestations.append(pending_attestation)
else:
assert data.source == state.previous_justified_checkpoint
state.previous_epoch_attestations.append(pending_attestation)
```
2019-10-13 06:52:51 +00:00
### Light client processing
```python
signer_validators = []
signer_keys = []
for i, bit in enumerate(block.light_client_signature_bitfield):
if bit:
signer_keys.append(state.current_light_committee.pubkeys[i])
index, _, _ = unpack_compact_validator(state.current_light_committee.compact_validators[i])
signer_validators.append(index)
assert bls_verify(
pubkey=bls_aggregate_pubkeys(signer_keys),
message_hash=get_block_root_at_slot(state, state.slot - 1),
signature=block.light_client_signature,
domain=DOMAIN_LIGHT_CLIENT
)
```
2019-10-12 14:59:51 +00:00
### Epoch transition
```python
2019-10-13 06:52:51 +00:00
# Slowly remove validators from the "online" set if they do not show up
2019-10-12 14:59:51 +00:00
for index in range(len(state.validators)):
if state.online_countdown[index] != 0:
state.online_countdown[index] = state.online_countdown[index] - 1
2019-10-13 06:52:51 +00:00
# Update light client committees
if get_current_epoch(state) % LIGHT_CLIENT_COMMITTEE_PERIOD == 0:
state.current_light_committee = state.next_light_committee
seed = get_seed(state, get_current_epoch(state), DOMAIN_LIGHT_CLIENT)
active_indices = get_active_validator_indices(state, get_current_epoch(state))
committee = [active_indices[compute_shuffled_index(ValidatorIndex(i), len(active_indices), seed)] for i in range(LIGHT_CLIENT_COMMITTEE_SIZE)]
state.next_light_committee = committee_to_compact_committee(state, committee)
2019-10-12 14:59:51 +00:00
```
2019-10-12 03:05:08 +00:00
### Fraud proofs
TODO. The intent is to have a single universal fraud proof type, which contains (i) an on-time attestation on shard `s` signing a set of `data_roots` , (ii) an index `i` of a particular data root to focus on, (iii) the full contents of the i'th data, (iii) a Merkle proof to the `shard_state_roots` in the parent block the attestation is referencing, and which then verifies that one of the two conditions is false:
* `custody_bits[i][j] != generate_custody_bit(subkey, block_contents)` for any `j`
2019-10-12 14:59:51 +00:00
* `execute_state_transition(slot, shard, attestation.shard_state_roots[i-1], parent.shard_state_roots, block_contents) != shard_state_roots[i]` (if `i=0` then instead use `parent.shard_state_roots[s][-1]` )
2019-10-12 03:05:08 +00:00
For phase 1, we will use a simple state transition function:
* Check that `data[:32] == prev_state_root`
* Check that `bls_verify(get_shard_proposer(state, slot, shard), hash_tree_root(data[-96:]), BLSSignature(data[-96:]), BLOCK_SIGNATURE_DOMAIN)`
* Output the new state root: `hash_tree_root(prev_state_root, other_prev_state_roots, data)`
2019-10-12 14:59:51 +00:00
## Honest persistent committee member behavior
2019-10-12 03:05:08 +00:00
Suppose you are a persistent committee member on shard `i` at slot `s` . Suppose `state.shard_next_slots[i] = s-1` ("the happy case"). In this case, you look for a valid proposal that satisfies the checks in the state transition function above, and if you see such a proposal `data` with post-state `post_state` , make an attestation with `shard_data_roots = [hash_tree_root(data)]` and `shard_state_roots = [post_state]` . If you do not find such a proposal, make an attestation using the "default empty proposal", `data = prev_state_root + b'\x00' * 96` .
Now suppose `state.shard_next_slots[i] = s-k` for `k>1` . Then, initialize `data = []` , `states = []` , `state = state.shard_state_roots[i]` . For `slot in (state.shard_next_slot, min(state.shard_next_slot + MAX_CATCHUP, s))` , do:
* Look for all valid proposals for `slot` whose first 32 bytes equal to `state` . If there are none, add a default empty proposal to `data` . If there is one such proposal `p` , add `p` to `data` . If there is more than one, select the one with the largest number of total attestations supporting it or its descendants, and add it to `data` .
* Set `state` to the state after processing the proposal just added to `data` ; append it to `states`
Make an attestation using `shard_data_roots = data` and `shard_state_roots = states` .