# Ethereum 2.0 Phase 1 -- Crosslinks and Shard Data **Notice**: This document is a work-in-progress for researchers and implementers. ## Table of contents - [Ethereum 2.0 Phase 1 -- Shard Data Chains](#ethereum-20-phase-1----shard-data-chains) - [Table of contents](#table-of-contents) - [Introduction](#introduction) - [Configuration](#configuration) - [Misc](#misc) - [Containers](#containers) - [Helpers](#helpers) - [Beacon Chain Changes](#beacon-chain-changes) - [New state variables](#new-state-variables) - [New block data structures](#new-block-data-structures) - [Attestation processing](#attestation-processing) - [Light client signature processing)(#light-client-signature-processing) - [Epoch transition](#epoch-transition) - [Fraud proofs](#fraud-proofs) - [Honest persistent committee member behavior](#honest-persistent-committee-member-behavior) ## Introduction This document describes the shard transition function (data layer only) and the shard fork choice rule as part of Phase 1 of Ethereum 2.0. ## Configuration ### Misc | Name | Value | Unit | Duration | | - | - | - | - | | `MAX_SHARDS` | `2**10` (= 1024) | | `ACTIVE_SHARDS` | `2**6` (= 64) | | `SHARD_ROOT_HISTORY_LENGTH` | `2**15` (= 32,768) | | `MAX_CATCHUP` | `2**5` (= 32) | slots | 3.2 min | | `ONLINE_PERIOD` | `2**3` (= 8) | epochs | ~51 min | | `LIGHT_CLIENT_COMMITTEE_SIZE` | `2**7` (= 128) | | `LIGHT_CLIENT_COMMITTEE_PERIOD` | `2**8` (= 256) | epochs | ~29 hours | ## Containers ### `AttestationData` ```python class AttestationData(Container): # Slot slot: Slot # LMD GHOST vote beacon_block_root: Hash # FFG vote source: Checkpoint target: Checkpoint # Shard data roots shard_data_roots: List[Hash, MAX_CATCHUP] # Intermediate state roots shard_state_roots: List[Hash, MAX_CATCHUP] # Index index: uint64 ``` ### `Attestation` ```python class Attestation(Container): aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE] data: AttestationData custody_bits: List[Bitlist[MAX_VALIDATORS_PER_COMMITTEE], MAX_CATCHUP] signature: BLSSignature ``` ### `CompactCommittee` ```python class CompactCommittee(Container): pubkeys: List[BLSPubkey, MAX_VALIDATORS_PER_COMMITTEE] compact_validators: List[uint64, MAX_VALIDATORS_PER_COMMITTEE] ``` ## Helpers ### `get_online_validators` ```python def get_online_indices(state: BeaconState) -> Set[ValidatorIndex]: active_validators = get_active_validator_indices(state, get_current_epoch(state)) return set([i for i in active_validators if state.online_countdown[i] != 0]) ``` ### `get_shard_state_root` ```python def get_shard_state_root(state: BeaconState, shard: Shard) -> Hash: return state.shard_state_roots[shard][-1] ``` ### `pack_compact_validator` ```python def pack_compact_validator(index: int, slashed: bool, balance_in_increments: int) -> int: """ Creates a compact validator object representing index, slashed status, and compressed balance. Takes as input balance-in-increments (// EFFECTIVE_BALANCE_INCREMENT) to preserve symmetry with the unpacking function. """ return (index << 16) + (slashed << 15) + balance_in_increments ``` ### `unpack_compact_validator` ```python def unpack_compact_validator(compact_validator: int) -> Tuple[int, bool, int]: """ Returns validator index, slashed, balance // EFFECTIVE_BALANCE_INCREMENT """ return compact_validator >> 16, bool((compact_validator >> 15) % 2), compact_validator & (2**15 - 1) ``` ### `committee_to_compact_committee` ```python def committee_to_compact_committee(state: BeaconState, committee: Sequence[ValidatorIndex]) -> CompactCommittee: """ Given a state and a list of validator indices, outputs the CompactCommittee representing them. """ validators = [state.validators[i] for i in committee] compact_validators = [ pack_compact_validator(i, v.slashed, v.effective_balance // EFFECTIVE_BALANCE_INCREMENT) for i, v in zip(committee, validators) ] pubkeys = [v.pubkey for v in validators] return CompactCommittee(pubkeys=pubkeys, compact_validators=compact_validators) ``` ## Beacon Chain Changes ### New state variables ``` shard_state_roots: Vector[List[Hash, MAX_CATCHUP], MAX_SHARDS] shard_next_slot: Vector[Slot, MAX_SHARDS] online_countdown: Bytes[VALIDATOR_REGISTRY_LIMIT] current_light_committee: CompactCommittee next_light_committee: CompactCommittee ``` ### New block data structures ``` light_client_signature_bitfield: Bitlist[LIGHT_CLIENT_COMMITTEE_SIZE] light_client_signature: BLSSignature ``` ### Attestation processing ```python def process_attestation(state: BeaconState, attestation: Attestation) -> None: data = attestation.data assert data.index < ACTIVE_SHARDS shard = (data.index + get_start_shard(state, data.slot)) % ACTIVE_SHARDS # Signature check committee = get_crosslink_committee(state, get_current_epoch(state), shard) for bits in attestation.custody_bits + [attestation.aggregation_bits]: assert bits == len(committee) # Check signature assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation)) # Get attesting indices attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits) # Type 1: on-time attestations if data.custody_bits != []: # Correct start slot assert data.slot == state.shard_next_slot[shard] # Correct data root count assert len(data.shard_data_roots) == len(attestation.custody_bits) == len(data.shard_state_roots) == min(state.slot - data.slot, MAX_CATCHUP) # Correct parent block root assert data.beacon_block_root == get_block_root_at_slot(state, state.slot - 1) # Apply online_indices = get_online_indices(state) if get_total_balance(state, online_indices.intersection(attesting_indices)) * 3 >= get_total_balance(state, online_indices) * 2: state.shard_state_roots[shard] = data.shard_state_roots state.shard_next_slot[shard] += len(data.shard_data_roots) # Type 2: delayed attestations else: assert slot_to_epoch(data.slot) in (get_current_epoch(state), get_previous_epoch(state)) assert len(data.shard_data_roots) == len(data.intermediate_state_roots) == 0 for index in attesting_indices: online_countdown[index] = ONLINE_PERIOD pending_attestation = PendingAttestation( slot=data.slot, shard=shard, aggregation_bits=attestation.aggregation_bits, inclusion_delay=state.slot - attestation_slot, proposer_index=get_beacon_proposer_index(state), ) if data.target.epoch == get_current_epoch(state): assert data.source == state.current_justified_checkpoint state.current_epoch_attestations.append(pending_attestation) else: assert data.source == state.previous_justified_checkpoint state.previous_epoch_attestations.append(pending_attestation) ``` ### Light client processing ```python signer_validators = [] signer_keys = [] for i, bit in enumerate(block.light_client_signature_bitfield): if bit: signer_keys.append(state.current_light_committee.pubkeys[i]) index, _, _ = unpack_compact_validator(state.current_light_committee.compact_validators[i]) signer_validators.append(index) assert bls_verify( pubkey=bls_aggregate_pubkeys(signer_keys), message_hash=get_block_root_at_slot(state, state.slot - 1), signature=block.light_client_signature, domain=DOMAIN_LIGHT_CLIENT ) ``` ### Epoch transition ```python # Slowly remove validators from the "online" set if they do not show up for index in range(len(state.validators)): if state.online_countdown[index] != 0: state.online_countdown[index] = state.online_countdown[index] - 1 # Update light client committees if get_current_epoch(state) % LIGHT_CLIENT_COMMITTEE_PERIOD == 0: state.current_light_committee = state.next_light_committee seed = get_seed(state, get_current_epoch(state), DOMAIN_LIGHT_CLIENT) active_indices = get_active_validator_indices(state, get_current_epoch(state)) committee = [active_indices[compute_shuffled_index(ValidatorIndex(i), len(active_indices), seed)] for i in range(LIGHT_CLIENT_COMMITTEE_SIZE)] state.next_light_committee = committee_to_compact_committee(state, committee) ``` ### Fraud proofs TODO. The intent is to have a single universal fraud proof type, which contains (i) an on-time attestation on shard `s` signing a set of `data_roots`, (ii) an index `i` of a particular data root to focus on, (iii) the full contents of the i'th data, (iii) a Merkle proof to the `shard_state_roots` in the parent block the attestation is referencing, and which then verifies that one of the two conditions is false: * `custody_bits[i][j] != generate_custody_bit(subkey, block_contents)` for any `j` * `execute_state_transition(slot, shard, attestation.shard_state_roots[i-1], parent.shard_state_roots, block_contents) != shard_state_roots[i]` (if `i=0` then instead use `parent.shard_state_roots[s][-1]`) For phase 1, we will use a simple state transition function: * Check that `data[:32] == prev_state_root` * Check that `bls_verify(get_shard_proposer(state, slot, shard), hash_tree_root(data[-96:]), BLSSignature(data[-96:]), BLOCK_SIGNATURE_DOMAIN)` * Output the new state root: `hash_tree_root(prev_state_root, other_prev_state_roots, data)` ## Honest persistent committee member behavior Suppose you are a persistent committee member on shard `i` at slot `s`. Suppose `state.shard_next_slots[i] = s-1` ("the happy case"). In this case, you look for a valid proposal that satisfies the checks in the state transition function above, and if you see such a proposal `data` with post-state `post_state`, make an attestation with `shard_data_roots = [hash_tree_root(data)]` and `shard_state_roots = [post_state]`. If you do not find such a proposal, make an attestation using the "default empty proposal", `data = prev_state_root + b'\x00' * 96`. Now suppose `state.shard_next_slots[i] = s-k` for `k>1`. Then, initialize `data = []`, `states = []`, `state = state.shard_state_roots[i]`. For `slot in (state.shard_next_slot, min(state.shard_next_slot + MAX_CATCHUP, s))`, do: * Look for all valid proposals for `slot` whose first 32 bytes equal to `state`. If there are none, add a default empty proposal to `data`. If there is one such proposal `p`, add `p` to `data`. If there is more than one, select the one with the largest number of total attestations supporting it or its descendants, and add it to `data`. * Set `state` to the state after processing the proposal just added to `data`; append it to `states` Make an attestation using `shard_data_roots = data` and `shard_state_roots = states`.