eth2.0-specs/specs/eip4844/polynomial-commitments.md

197 lines
6.8 KiB
Markdown
Raw Normal View History

# EIP-4844 -- Polynomial Commitments
## Table of contents
<!-- TOC -->
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [Introduction](#introduction)
- [Custom types](#custom-types)
- [Constants](#constants)
- [Preset](#preset)
- [Trusted setup](#trusted-setup)
- [Helper functions](#helper-functions)
- [BLS12-381 helpers](#bls12-381-helpers)
- [`bls_modular_inverse`](#bls_modular_inverse)
- [`div`](#div)
- [`lincomb`](#lincomb)
- [`matrix_lincomb`](#matrix_lincomb)
- [KZG](#kzg)
- [`blob_to_kzg_commitment`](#blob_to_kzg_commitment)
- [`verify_kzg_proof`](#verify_kzg_proof)
- [`compute_kzg_proof`](#compute_kzg_proof)
- [Polynomials](#polynomials)
- [`evaluate_polynomial_in_evaluation_form`](#evaluate_polynomial_in_evaluation_form)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
<!-- /TOC -->
## Introduction
This document specifies basic polynomial operations and KZG polynomial commitment operations as they are needed for the EIP-4844 specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations.
## Custom types
| Name | SSZ equivalent | Description |
| - | - | - |
| `G1Point` | `Bytes48` | |
| `G2Point` | `Bytes96` | |
| `BLSFieldElement` | `uint256` | `x < BLS_MODULUS` |
| `KZGCommitment` | `Bytes48` | Same as BLS standard "is valid pubkey" check but also allows `0x00..00` for point-at-infinity |
| `KZGProof` | `Bytes48` | Same as for `KZGCommitment` |
## Constants
| Name | Value | Notes |
| - | - | - |
| `BLS_MODULUS` | `52435875175126190479447740508185965837690552500527637822603658699938581184513` | Scalar field modulus of BLS12-381 |
| `ROOTS_OF_UNITY` | `Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB]` | Roots of unity of order FIELD_ELEMENTS_PER_BLOB over the BLS12-381 field |
## Preset
### Trusted setup
The trusted setup is part of the preset: during testing a `minimal` insecure variant may be used,
but reusing the `mainnet` settings in public networks is a critical security requirement.
| Name | Value |
| - | - |
| `KZG_SETUP_G1` | `Vector[G1Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
| `KZG_SETUP_G2` | `Vector[G2Point, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
| `KZG_SETUP_LAGRANGE` | `Vector[KZGCommitment, FIELD_ELEMENTS_PER_BLOB]`, contents TBD |
## Helper functions
### BLS12-381 helpers
#### `bls_modular_inverse`
```python
def bls_modular_inverse(x: BLSFieldElement) -> BLSFieldElement:
"""
Compute the modular inverse of x
i.e. return y such that x * y % BLS_MODULUS == 1 and return 0 for x == 0
"""
return pow(x, -1, BLS_MODULUS) if x != 0 else 0
```
#### `div`
```python
2022-06-23 18:40:09 +08:00
def div(x: BLSFieldElement, y: BLSFieldElement) -> BLSFieldElement:
"""Divide two field elements: `x` by `y`"""
return (int(x) * int(bls_modular_inverse(y))) % BLS_MODULUS
```
#### `lincomb`
```python
def lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment:
"""
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
"""
assert len(points) == len(scalars)
result = bls.Z1
for x, a in zip(points, scalars):
result = bls.add(result, bls.multiply(bls.bytes48_to_G1(x), a))
return KZGCommitment(bls.G1_to_bytes48(result))
```
#### `matrix_lincomb`
```python
def matrix_lincomb(vectors: Sequence[Sequence[BLSFieldElement]],
scalars: Sequence[BLSFieldElement]) -> Sequence[BLSFieldElement]:
"""
Given a list of ``vectors``, interpret it as a 2D matrix and compute the linear combination
of each column with `scalars`: return the resulting vector.
"""
result = [0] * len(vectors[0])
for v, s in zip(vectors, scalars):
for i, x in enumerate(v):
result[i] = (result[i] + int(s) * int(x)) % BLS_MODULUS
return [BLSFieldElement(x) for x in result]
```
### KZG
KZG core functions. These are also defined in EIP-4844 execution specs.
#### `blob_to_kzg_commitment`
```python
def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
return lincomb(KZG_SETUP_LAGRANGE, blob)
```
#### `verify_kzg_proof`
```python
def verify_kzg_proof(polynomial_kzg: KZGCommitment,
z: BLSFieldElement,
y: BLSFieldElement,
kzg_proof: KZGProof) -> bool:
2022-06-23 18:40:09 +08:00
"""
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
2022-06-23 18:40:09 +08:00
"""
# Verify: P - y = Q * (X - z)
X_minus_z = bls.add(bls.bytes96_to_G2(KZG_SETUP_G2[1]), bls.multiply(bls.G2, BLS_MODULUS - z))
P_minus_y = bls.add(bls.bytes48_to_G1(polynomial_kzg), bls.multiply(bls.G1, BLS_MODULUS - y))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2)],
[bls.bytes48_to_G1(kzg_proof), X_minus_z]
])
```
#### `compute_kzg_proof`
```python
def compute_kzg_proof(polynomial: Sequence[BLSFieldElement], z: BLSFieldElement) -> KZGProof:
"""Compute KZG proof at point `z` with `polynomial` being in evaluation form"""
# To avoid SSZ overflow/underflow, convert element into int
polynomial = [int(i) for i in polynomial]
z = int(z)
# Shift our polynomial first (in evaluation form we can't handle the division remainder)
y = evaluate_polynomial_in_evaluation_form(polynomial, z)
polynomial_shifted = [(p - int(y)) % BLS_MODULUS for p in polynomial]
# Make sure we won't divide by zero during division
assert z not in ROOTS_OF_UNITY
denominator_poly = [(x - z) % BLS_MODULUS for x in ROOTS_OF_UNITY]
# Calculate quotient polynomial by doing point-by-point division
quotient_polynomial = [div(a, b) for a, b in zip(polynomial_shifted, denominator_poly)]
return KZGProof(lincomb(KZG_SETUP_LAGRANGE, quotient_polynomial))
```
### Polynomials
#### `evaluate_polynomial_in_evaluation_form`
```python
def evaluate_polynomial_in_evaluation_form(polynomial: Sequence[BLSFieldElement],
z: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point `z`
Uses the barycentric formula:
f(z) = (1 - z**WIDTH) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i])
"""
width = len(polynomial)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = bls_modular_inverse(width)
# Make sure we won't divide by zero during division
assert z not in ROOTS_OF_UNITY
result = 0
for i in range(width):
result += div(int(polynomial[i]) * int(ROOTS_OF_UNITY[i]), (z - ROOTS_OF_UNITY[i]))
result = result * (pow(z, width, BLS_MODULUS) - 1) * inverse_width % BLS_MODULUS
return result
```