* Added initial draft for an EIP regarding ENS text records. * Changed extended to vendor specific and added some keys. * Updated to new preamble header. * Initial Merkle-Airdrop EIP draft. * Added author Nick Johnsom and fixed typo. * Fixed typo. * Update and rename eip-draft-ens-text-data.md to eip-634.md * Removed Merkle Air Drops. * Removed draft for merkle air-drops. * Added preliminary draft for compact signatures. * Fixed type in test case. * Small changes. * Added Nick as a co-author, updated links with titles and expanded on Rationale. * Updated link title. * Updated with suggestions from @axic. * Updated EIP header. * Updated discussions-to URL. * Update EIPS/eip-2098.md Updated bracket format for GitHub username. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu> * Update EIPS/eip-2098.md Fixed typo. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu> * Update EIPS/eip-2098.md Fixed typo. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu> * Update EIPS/eip-2098.md Fixed typo. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu> * Update EIPS/eip-2098.md Fixed typo. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu> * Update EIPS/eip-2098.md Fixed typo. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu> * Added link to ethers implmenetation of splitSignature which derives the compact vs representation. * Add explicit bit layout of the compact representation. * Moved links to the original idea to a separate Acknowledgments section. * Update EIPS/eip-2098.md Fixed typo. Co-Authored-By: Alex Beregszaszi <alex@rtfs.hu>
7.2 KiB
eip | title | status | type | author | discussions-to | created |
---|---|---|---|---|---|---|
2098 | Compact Signature Representation | Draft | Informational | Richard Moore (@ricmoo), Nick Johnson <nick@ethereum.org> | https://github.com/ethereum/EIPs/issues/2440 | 2019-03-14 |
Simple Summary
This proposal describes a compact representation of an Ethereum Signature.
Abstract
The secp256k1 curve permits the computation of the public key of signed digest when coupled with a signature, which is used implicitly to establish the origin of a transaction from an Externally Owned Account as well as on-chain in EVM contracts for example, in meta-transactions and multi-sig contracts.
Currently signatures require 65 bytes to represent, which when aligned to 256-bit words, requires 96 bytes (with 31 zero bytes injected). With compact signatures, this can be reduced to 64 bytes, which remains 64 bytes when word-aligned.
Motivation
The motivations for a compact representation are to simplify handling transactions in client code, reduce gas costs and reduce transaction sizes.
Specification
A secp256k1 signature is made up of 3 parameters, r
, s
and v
. The r
represents the x
component on the curve (from which the y
can be
computed), and the s
represents the challenge solution for signing by a
private key. Due to the symmetric nature of an elliptic curve, a v
is
required, which indicates which of the 2 possible solutions was intended,
by indicating its parity (odd-ness).
Two key observations are required to create a compact representation.
First, the v
parameter is always either 0 or 1 (canonically the values used
have been 27 and 28, as these values didn't collide with other binary prefixes
used in Bitcoin.)
Second, the top bit of the s
parameters is always 0, due to the use of
canonical signatures which flip the solution parity to prevent negative values,
which was introduced as a constraint in Homestead.
So, we can hijack the top bit in the s
parameter to store the value of v
, resulting in:
[256-bit r value][1-bit v value][255-bit s value]
Example Implementation In Python
def to_compact(r, s, v):
return {
"r": r,
"vs": ((v - 27) << 255) | s
}
def to_canonical(r, vs):
return {
"r": r,
"s": vs & ((1 << 255) - 1),
"v": (27 + (vs >> 255))
}
Rationale
The compact representation proposed is simple to both compose and decompose in clients and in Solidity, so that it can be easily (and intuitively) supported, while reducing transaction sizes and gas costs.
Backwards Compatibility
The Compact Representation does not collide with canonical signature as it uses 2 parameters (r, vs) while canonical signatures involve 3 separate parameters (r, s, v).
Test Vectors
Private Key: 0x1234567890123456789012345678901234567890123456789012345678901234
Message: "Hello World"
Signature:
r: 0x68a020a209d3d56c46f38cc50a33f704f4a9a10a59377f8dd762ac66910e9b90
s: 0x7e865ad05c4035ab5792787d4a0297a43617ae897930a6fe4d822b8faea52064
v: 27
Compact Signature:
r: 0x68a020a209d3d56c46f38cc50a33f704f4a9a10a59377f8dd762ac66910e9b90
vs: 0x7e865ad05c4035ab5792787d4a0297a43617ae897930a6fe4d822b8faea52064
Private Key: 0x1234567890123456789012345678901234567890123456789012345678901234
Message: "It's a small(er) world"
Signature:
r: 0x9328da16089fcba9bececa81663203989f2df5fe1faa6291a45381c81bd17f76
s: 0x139c6d6b623b42da56557e5e734a43dc83345ddfadec52cbe24d0cc64f550793
v: 28
Compact Signature:
r: 0x9328da16089fcba9bececa81663203989f2df5fe1faa6291a45381c81bd17f76
vs: 0x939c6d6b623b42da56557e5e734a43dc83345ddfadec52cbe24d0cc64f550793
Gas Analysis
Solidity
// See: https://ropsten.etherscan.io/address/0xce826fbc499e3723df5668ea90a4bc51aeca13b8
pragma solidity 0.5.6;
contract TestCompact {
address _lastAddr;
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) public returns (address) {
_lastAddr = ecrecover(hash, v, r, s);
}
function recoverCompact(bytes32 hash, bytes32 r, bytes32 vs) public returns (address) {
bytes32 s = vs & 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
uint8 v = 27 + uint8(uint256(vs) >> 255);
_lastAddr = ecrecover(hash, v, r, s);
}
function lastAddr() public view returns (address) {
return _lastAddr;
}
}
JavaScript
let address = "0xcE826fbC499e3723DF5668Ea90a4BC51AeCa13b8";
let abi = [
'function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) public returns (address)',
'function recoverCompact(bytes32 hash, bytes32 r, bytes32 vs) public returns (address)',
'function lastAddr() public view returns (address)'
];
let wallet = Wallet.fromMnemonic("relief cousin sorry cabin burst frog slush flavor pitch tragic hip disagree").connect(provider);
let hash = "0x6ac9e083f46825a57816e023ae641ee45ac9b82cc2c370c10ec1ef4c835fa182";
let sig = wallet.signingKey.signDigest(hash)
let contract = new Contract(address, abi, wallet);
(async function() {
let tx, receipt;
console.log("Canonical:");
tx = await contract.recover(hash, sig.v, sig.r, sig.s);
console.log(" Hash: ", tx.hash);
console.log(" Data: ", tx.data);
console.log(" Length: ", utils.hexDataLength(tx.data));
receipt = await tx.wait();
console.log(" Gas Used:", receipt.gasUsed.toString());
console.log("Compact:");
tx = await contract.recoverCompact(hash, sig.r, sig._vs);
console.log(" Hash: ", tx.hash);
console.log(" Data: ", tx.data);
console.log(" Length: ", utils.hexDataLength(tx.data));
receipt = await tx.wait();
console.log(" Gas Used:", receipt.gasUsed.toString());
})();
Result
/home/ricmoo> ethers --network ropsten run test.js
Canonical:
Hash: 0x3280985011d2f25e76141681e865216e796cf065880eb9dd1f8221f3243028d2
Data: 0xc2bf17b06ac9e083f46825a57816e023ae641ee45ac9b82cc2c370c10ec1ef4c835fa182000000000000000000000000000000000000000000000000000000000000001be95b1a8633ee7ff851f68cf4303030b1e2596d686cafd9803cef74919a9139291c492d05696da754cf342bec961d00d9f7dfac3ab90b1e9352177c7b9bfa2a5d
Length: 132
Gas Used: 37541
Compact:
Hash: 0x513bd8bd8710a84903235ca60591fc60f2f3db524d14cc1b6874edc628512176
Data: 0x1230abb66ac9e083f46825a57816e023ae641ee45ac9b82cc2c370c10ec1ef4c835fa182e95b1a8633ee7ff851f68cf4303030b1e2596d686cafd9803cef74919a9139291c492d05696da754cf342bec961d00d9f7dfac3ab90b1e9352177c7b9bfa2a5d
Length: 100
Gas Used: 37329
Implementations
The ethers.js library supports this in v5
as an unofficial property of split signatures (i.e. sig._vs
), but should be
considered an internal property that may change at discretion of the community
and any changes to this EIP.
Acknowledgments
Copyright
Copyright and related rights waived via CC0.