mirror of https://github.com/vacp2p/zerokit.git
120 lines
4.4 KiB
Rust
120 lines
4.4 KiB
Rust
|
// Tests adapted from https://github.com/worldcoin/semaphore-rs/blob/d462a4372f1fd9c27610f2acfe4841fab1d396aa/src/merkle_tree.rs
|
||
|
#[cfg(test)]
|
||
|
mod test {
|
||
|
use hex_literal::hex;
|
||
|
use tiny_keccak::{Hasher as _, Keccak};
|
||
|
use utils::{FullMerkleTree, Hasher, OptimalMerkleTree};
|
||
|
|
||
|
struct Keccak256;
|
||
|
|
||
|
impl Hasher for Keccak256 {
|
||
|
type Fr = [u8; 32];
|
||
|
|
||
|
fn default_leaf() -> Self::Fr {
|
||
|
[0; 32]
|
||
|
}
|
||
|
|
||
|
fn hash(inputs: &[Self::Fr]) -> Self::Fr {
|
||
|
let mut output = [0; 32];
|
||
|
let mut hasher = Keccak::v256();
|
||
|
for element in inputs {
|
||
|
hasher.update(element);
|
||
|
}
|
||
|
hasher.finalize(&mut output);
|
||
|
output
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn test_root() {
|
||
|
let leaves = [
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
|
||
|
];
|
||
|
|
||
|
let default_tree_root =
|
||
|
hex!("b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30");
|
||
|
|
||
|
let roots = [
|
||
|
hex!("c1ba1812ff680ce84c1d5b4f1087eeb08147a4d510f3496b2849df3a73f5af95"),
|
||
|
hex!("893760ec5b5bee236f29e85aef64f17139c3c1b7ff24ce64eb6315fca0f2485b"),
|
||
|
hex!("222ff5e0b5877792c2bc1670e2ccd0c2c97cd7bb1672a57d598db05092d3d72c"),
|
||
|
hex!("a9bb8c3f1f12e9aa903a50c47f314b57610a3ab32f2d463293f58836def38d36"),
|
||
|
];
|
||
|
|
||
|
let mut tree = FullMerkleTree::<Keccak256>::new(2, [0; 32]);
|
||
|
assert_eq!(tree.root(), default_tree_root);
|
||
|
for i in 0..leaves.len() {
|
||
|
tree.set(i, leaves[i]).unwrap();
|
||
|
assert_eq!(tree.root(), roots[i]);
|
||
|
}
|
||
|
|
||
|
let mut tree = OptimalMerkleTree::<Keccak256>::new(2, [0; 32]);
|
||
|
assert_eq!(tree.root(), default_tree_root);
|
||
|
for i in 0..leaves.len() {
|
||
|
tree.set(i, leaves[i]).unwrap();
|
||
|
assert_eq!(tree.root(), roots[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn test_proof() {
|
||
|
let leaves = [
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000001"),
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000002"),
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000003"),
|
||
|
hex!("0000000000000000000000000000000000000000000000000000000000000004"),
|
||
|
];
|
||
|
|
||
|
// We thest the FullMerkleTree implementation
|
||
|
let mut tree = FullMerkleTree::<Keccak256>::new(2, [0; 32]);
|
||
|
for i in 0..leaves.len() {
|
||
|
// We set the leaves
|
||
|
tree.set(i, leaves[i]).unwrap();
|
||
|
|
||
|
// We compute a merkle proof
|
||
|
let proof = tree.proof(i).expect("index should be set");
|
||
|
|
||
|
// We verify if the merkle proof corresponds to the right leaf index
|
||
|
assert_eq!(proof.leaf_index(), i);
|
||
|
|
||
|
// We verify the proof
|
||
|
assert!(tree.verify(&leaves[i], &proof).unwrap());
|
||
|
|
||
|
// We ensure that the Merkle proof and the leaf generate the same root as the tree
|
||
|
assert_eq!(proof.compute_root_from(&leaves[i]), tree.root());
|
||
|
|
||
|
// We check that the proof is not valid for another leaf
|
||
|
assert!(!tree
|
||
|
.verify(&leaves[(i + 1) % leaves.len()], &proof)
|
||
|
.unwrap());
|
||
|
}
|
||
|
|
||
|
// We test the OptimalMerkleTree implementation
|
||
|
let mut tree = OptimalMerkleTree::<Keccak256>::new(2, [0; 32]);
|
||
|
for i in 0..leaves.len() {
|
||
|
// We set the leaves
|
||
|
tree.set(i, leaves[i]).unwrap();
|
||
|
|
||
|
// We compute a merkle proof
|
||
|
let proof = tree.proof(i).expect("index should be set");
|
||
|
|
||
|
// We verify if the merkle proof corresponds to the right leaf index
|
||
|
assert_eq!(proof.leaf_index(), i);
|
||
|
|
||
|
// We verify the proof
|
||
|
assert!(tree.verify(&leaves[i], &proof).unwrap());
|
||
|
|
||
|
// We ensure that the Merkle proof and the leaf generate the same root as the tree
|
||
|
assert_eq!(proof.compute_root_from(&leaves[i]), tree.root());
|
||
|
|
||
|
// We check that the proof is not valid for another leaf
|
||
|
assert!(!tree
|
||
|
.verify(&leaves[(i + 1) % leaves.len()], &proof)
|
||
|
.unwrap());
|
||
|
}
|
||
|
}
|
||
|
}
|