// Tests adapted from https://github.com/worldcoin/semaphore-rs/blob/d462a4372f1fd9c27610f2acfe4841fab1d396aa/src/merkle_tree.rs #[cfg(test)] mod test { use hex_literal::hex; use tiny_keccak::{Hasher as _, Keccak}; use utils::{FullMerkleTree, Hasher, OptimalMerkleTree}; struct Keccak256; impl Hasher for Keccak256 { type Fr = [u8; 32]; fn default_leaf() -> Self::Fr { [0; 32] } fn hash(inputs: &[Self::Fr]) -> Self::Fr { let mut output = [0; 32]; let mut hasher = Keccak::v256(); for element in inputs { hasher.update(element); } hasher.finalize(&mut output); output } } #[test] fn test_root() { let leaves = [ hex!("0000000000000000000000000000000000000000000000000000000000000001"), hex!("0000000000000000000000000000000000000000000000000000000000000002"), hex!("0000000000000000000000000000000000000000000000000000000000000003"), hex!("0000000000000000000000000000000000000000000000000000000000000004"), ]; let default_tree_root = hex!("b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30"); let roots = [ hex!("c1ba1812ff680ce84c1d5b4f1087eeb08147a4d510f3496b2849df3a73f5af95"), hex!("893760ec5b5bee236f29e85aef64f17139c3c1b7ff24ce64eb6315fca0f2485b"), hex!("222ff5e0b5877792c2bc1670e2ccd0c2c97cd7bb1672a57d598db05092d3d72c"), hex!("a9bb8c3f1f12e9aa903a50c47f314b57610a3ab32f2d463293f58836def38d36"), ]; let mut tree = FullMerkleTree::::new(2, [0; 32]); assert_eq!(tree.root(), default_tree_root); for i in 0..leaves.len() { tree.set(i, leaves[i]).unwrap(); assert_eq!(tree.root(), roots[i]); } let mut tree = OptimalMerkleTree::::new(2, [0; 32]); assert_eq!(tree.root(), default_tree_root); for i in 0..leaves.len() { tree.set(i, leaves[i]).unwrap(); assert_eq!(tree.root(), roots[i]); } } #[test] fn test_proof() { let leaves = [ hex!("0000000000000000000000000000000000000000000000000000000000000001"), hex!("0000000000000000000000000000000000000000000000000000000000000002"), hex!("0000000000000000000000000000000000000000000000000000000000000003"), hex!("0000000000000000000000000000000000000000000000000000000000000004"), ]; // We thest the FullMerkleTree implementation let mut tree = FullMerkleTree::::new(2, [0; 32]); for i in 0..leaves.len() { // We set the leaves tree.set(i, leaves[i]).unwrap(); // We compute a merkle proof let proof = tree.proof(i).expect("index should be set"); // We verify if the merkle proof corresponds to the right leaf index assert_eq!(proof.leaf_index(), i); // We verify the proof assert!(tree.verify(&leaves[i], &proof).unwrap()); // We ensure that the Merkle proof and the leaf generate the same root as the tree assert_eq!(proof.compute_root_from(&leaves[i]), tree.root()); // We check that the proof is not valid for another leaf assert!(!tree .verify(&leaves[(i + 1) % leaves.len()], &proof) .unwrap()); } // We test the OptimalMerkleTree implementation let mut tree = OptimalMerkleTree::::new(2, [0; 32]); for i in 0..leaves.len() { // We set the leaves tree.set(i, leaves[i]).unwrap(); // We compute a merkle proof let proof = tree.proof(i).expect("index should be set"); // We verify if the merkle proof corresponds to the right leaf index assert_eq!(proof.leaf_index(), i); // We verify the proof assert!(tree.verify(&leaves[i], &proof).unwrap()); // We ensure that the Merkle proof and the leaf generate the same root as the tree assert_eq!(proof.compute_root_from(&leaves[i]), tree.root()); // We check that the proof is not valid for another leaf assert!(!tree .verify(&leaves[(i + 1) % leaves.len()], &proof) .unwrap()); } } }