Samuel Hawksby-Robinson c8f9dad554
Feature/key compression (#1990)
## What has changed?

I've introduced to the public binding functionality that will compress and decompress public keys of a variety of encoding and key types. This functionality supports all major byte encoding formats and the following EC public key types:

- `secp256k1` pks
- `bls12-381 g1` pks
- `bls12-381 g2` pks

## Why make the change?

We want shorter public (chat) keys and we want to be future proof and encoding agnostic. See the issue here https://github.com/status-im/status-go/issues/1937

---

* Added basic signature for compresspk and uncompresspk

* Added basic encoding information

* make vendor

* formatted imports for the linter

* Reformatted imports hoping linter likes it

* This linter is capricious

* Added check that the secp256k1 key is valid

* Added test for valid key

* Added multiformat/go-varint dep

* Added public key type handling

* Added key decompression with key type handling

* Added handling for '0x' type indentifying

* Added more robust testing

* Less lint for the linting gods

* make vendor for bls12_381

* Added bls12-381 compression tests

* Added decompress key expected results

* Refactor of typed and untyped keys in tests

* Lint god appeasment

* Refactor of sample public keys

* Implemented bls12-381 decompression

* gofmt

* Renamed decode/encode funcs to be more descriptive

* Added binary bindings for key de/compression

* Refactor of func parameters

gomobile is a bit tempermental using raw bytes as a parameter, so I've decided to use string only inputs and outputs

* gofmt

* Added function documentation

* Moved multiformat de/compression into api/multiformat ns

* Moved multiformat de/compression into api/multiformat ns

* Changed compress to serialize on API
2020-06-23 11:47:17 +01:00

31 lines
1.1 KiB
Markdown

### High Speed BLS12-381 Implementation in Go
#### Pairing Instance
A Group instance or a pairing engine instance _is not_ suitable for concurrent processing since an instance has its own preallocated memory for temporary variables. A new instance must be created for each thread.
#### Base Field
x86 optimized base field is generated with [kilic/fp](https://github.com/kilic/fp) and for native go is generated with [goff](https://github.com/ConsenSys/goff). Generated codes are slightly edited in both for further requirements.
#### Scalar Field
Standart big.Int module is currently used for scalar field implementation. x86 optimized faster field implementation is planned to be added.
#### Serialization
Point serialization is in line with [zkcrypto library](https://github.com/zkcrypto/pairing/tree/master/src/bls12_381#serialization).
#### Hashing to Curve
Hashing to curve implementations for both G1 and G2 follows `_XMD:SHA-256_SSWU_RO_` and `_XMD:SHA-256_SSWU_NU_` suites as defined in `v7` of [irtf hash to curve draft](https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/).
#### Benchmarks
on _3.1 GHz i5_
```
BenchmarkPairing 1034837 ns/op
```