specs/status-payloads-spec.md

6.1 KiB

Status Payloads spec

Version: 0.1 (Draft)

Authors: Adam Babik adam@status.im, Oskar Thorén oskar@status.im (alphabetical order)

Abstract

This specifications decribes how the payload of each message in Status looks like. It is primarly centered around chat and chat-related use cases.

The payloads aims be flexible enough to support messaging but also cases described in the Status Whitepaper as well as various clients created using different technologies.

Table of Contents

Introduction

In this document we describe the payload format and some special considerations.

Payload wrapper

All payloads are wrapped in a protobuf record record:

message StatusProtocolMessage {
  bytes signature = 1;
  bytes payload = 2;
}

signature is the bytes of the signed SHA3-256 of the payload, signed with the key of the author of the message. The signature is needed to validate authorship of the message, so that the message can be relayed to third parties. If a signature is not present but an author is provided by a layer below, the message is to be relayed to third parties and its considered plausibly deniable.

Encoding

The payload is encoded using Transit format. Transit was chosen over JSON in order to reduce the bandwidth.

Example of a valid encoded payload:

["~#c4",["abc123","text/plain","~:public-group-user-message",154593077368201,1545930773682,["^ ","~:chat-id","testing-adamb","~:text","abc123"]]]

As you can see, the message is an array and each index value has its meaning:

  • 0: c4 is a decoder handler identification for the current payload format. Identifications allow to register handlers for many different types of payload
  • 1: array which items correspond to the described payload fields above

For more details regarding serialization and deserialization please consult transit format specification.

Message

The type Message represents a text message exchanged between clients.

Payload

Payload is a struct (a compound data type) with the following fields (order is important):

Field Name Type
1 text string
2 content type enum (more in Content types)
3 message type enum (more in Message types)
4 clock int64
5 timestamp int64
6 content struct { chat-id string, text string }

Content types

Content types are required for a proper interpretation of incoming messages. Not each message is a plain text but may carry a different information.

The following content types MUST be supported:

  • text/plain identifies a message which content is a plain text.

There are also other content types that MAY be implemented by the client:

  • sticker TODO
  • status TODO
  • command TODO
  • command-request TODO
  • emoji TODO

Message types

Message types are required to decide how a particular message is encrypted (more in Whisper > Message encryption) and what metadata needs to be attached (more in Whisper > Topic) when passing a message to the transport layer.

The following messages types MUST be supported:

  • public-group-user-message is a message to the public group
  • user-message is a private message
  • group-user-message is a message to the private group.

Clock vs Timestamp and message ordering

timestamp MUST be Unix time calculated when the message is created. Because the peers in the Whisper network should have synchronized time, timestamp values should be fairly accurate among all Whisper network participants.

clock SHOULD be calculated using the algorithm of Lamport timestamps. When there are messages available in a chat, clock's value is calculated based on the last received message in a particular chat: last-message-clock-value + 1. If there are no messages, clock is initialized with timestamp's value.

clock value is used for the message ordering. Due to the used algorithm and distributed nature of the system, we achieve casual ordering which might produce counterintuitive results in some edge cases. For example, when one joins a public chat and sends a message before receiving the exist messages, their message clock value might be lower and the message will end up in the past when the historical messages are fetched.

Upgradability

The current protocol format is hardly upgradable without breaking backward compatibility. Because Transit is used in this particular way described above, the only reliable option is to append a new field to the Transit record definition. It will be simply ignored by the old clients.

Security Considerations

TBD.

Design rationale

Why are you using Transit and Protobuf?

Transit was initially chose for encoding, and Protobuf was added afterwards. This is partly due to the history of the protocol living inside of status-react, which is written in Clojurescript. In future versions of payload and data sync client specifications it is likely we'll move towards Protobuf only. See e.g. Dasy for a research proof of concept.