Optimization: only do 59 hddivsteps per iteration instead of 62
This commit is contained in:
parent
277b224b6a
commit
cd393ce228
|
@ -145,7 +145,8 @@ typedef struct {
|
||||||
int64_t u, v, q, r;
|
int64_t u, v, q, r;
|
||||||
} secp256k1_modinv64_trans2x2;
|
} secp256k1_modinv64_trans2x2;
|
||||||
|
|
||||||
/* Compute the transition matrix and zeta for 62 divsteps (where zeta=-(delta+1/2)).
|
/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
|
||||||
|
* Note that the transformation matrix is scaled by 2^62 and not 2^59.
|
||||||
*
|
*
|
||||||
* Input: zeta: initial zeta
|
* Input: zeta: initial zeta
|
||||||
* f0: bottom limb of initial f
|
* f0: bottom limb of initial f
|
||||||
|
@ -155,18 +156,19 @@ typedef struct {
|
||||||
*
|
*
|
||||||
* Implements the divsteps_n_matrix function from the explanation.
|
* Implements the divsteps_n_matrix function from the explanation.
|
||||||
*/
|
*/
|
||||||
static int64_t secp256k1_modinv64_divsteps_62(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
|
static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
|
||||||
/* u,v,q,r are the elements of the transformation matrix being built up,
|
/* u,v,q,r are the elements of the transformation matrix being built up,
|
||||||
* starting with the identity matrix. Semantically they are signed integers
|
* starting with the identity matrix times 8 (because the caller expects
|
||||||
|
* a result scaled by 2^62). Semantically they are signed integers
|
||||||
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
|
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
|
||||||
* permits left shifting (which is UB for negative numbers). The range
|
* permits left shifting (which is UB for negative numbers). The range
|
||||||
* being inside [-2^63,2^63) means that casting to signed works correctly.
|
* being inside [-2^63,2^63) means that casting to signed works correctly.
|
||||||
*/
|
*/
|
||||||
uint64_t u = 1, v = 0, q = 0, r = 1;
|
uint64_t u = 8, v = 0, q = 0, r = 8;
|
||||||
uint64_t c1, c2, f = f0, g = g0, x, y, z;
|
uint64_t c1, c2, f = f0, g = g0, x, y, z;
|
||||||
int i;
|
int i;
|
||||||
|
|
||||||
for (i = 0; i < 62; ++i) {
|
for (i = 3; i < 62; ++i) {
|
||||||
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
||||||
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
||||||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||||
|
@ -193,8 +195,8 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t zeta, uint64_t f0, uint64_
|
||||||
g >>= 1;
|
g >>= 1;
|
||||||
u <<= 1;
|
u <<= 1;
|
||||||
v <<= 1;
|
v <<= 1;
|
||||||
/* Bounds on zeta that follow from the bounds on iteration count (max 10*62 divsteps). */
|
/* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
|
||||||
VERIFY_CHECK(zeta >= -621 && zeta <= 621);
|
VERIFY_CHECK(zeta >= -591 && zeta <= 591);
|
||||||
}
|
}
|
||||||
/* Return data in t and return value. */
|
/* Return data in t and return value. */
|
||||||
t->u = (int64_t)u;
|
t->u = (int64_t)u;
|
||||||
|
@ -204,8 +206,10 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t zeta, uint64_t f0, uint64_
|
||||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||||
* aggregate of 62 of them will have determinant 2^62. */
|
* aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
|
||||||
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
|
* 8*identity (which has determinant 2^6) means the overall outputs has determinant
|
||||||
|
* 2^65. */
|
||||||
|
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 65);
|
||||||
return zeta;
|
return zeta;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -290,7 +294,7 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
|
||||||
return eta;
|
return eta;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix for 62 divsteps.
|
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
|
||||||
*
|
*
|
||||||
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
||||||
* (-2^62,2^62).
|
* (-2^62,2^62).
|
||||||
|
@ -376,7 +380,7 @@ static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
|
/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
|
||||||
*
|
*
|
||||||
* This implements the update_fg function from the explanation.
|
* This implements the update_fg function from the explanation.
|
||||||
*/
|
*/
|
||||||
|
@ -463,11 +467,11 @@ static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_m
|
||||||
int i;
|
int i;
|
||||||
int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
|
int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
|
||||||
|
|
||||||
/* Do 10 iterations of 62 divsteps each = 620 divsteps. 590 suffices for 256-bit inputs. */
|
/* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
|
||||||
for (i = 0; i < 10; ++i) {
|
for (i = 0; i < 10; ++i) {
|
||||||
/* Compute transition matrix and new zeta after 62 divsteps. */
|
/* Compute transition matrix and new zeta after 59 divsteps. */
|
||||||
secp256k1_modinv64_trans2x2 t;
|
secp256k1_modinv64_trans2x2 t;
|
||||||
zeta = secp256k1_modinv64_divsteps_62(zeta, f.v[0], g.v[0], &t);
|
zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
|
||||||
/* Update d,e using that transition matrix. */
|
/* Update d,e using that transition matrix. */
|
||||||
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
|
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
|
||||||
/* Update f,g using that transition matrix. */
|
/* Update f,g using that transition matrix. */
|
||||||
|
|
Loading…
Reference in New Issue