Use modified divsteps with initial delta=1/2 for constant-time
Instead of using eta=-delta, use zeta=-(delta+1/2) to represent delta. This variant only needs at most 590 iterations for 256-bit inputs rather than 724 (by convex hull bounds analysis).
This commit is contained in:
parent
376ca366db
commit
277b224b6a
|
@ -244,8 +244,8 @@ def modinv(M, Mi, x):
|
|||
|
||||
This means that in practice we'll always perform a multiple of *N* divsteps. This is not a problem
|
||||
because once *g=0*, further divsteps do not affect *f*, *g*, *d*, or *e* anymore (only *δ* keeps
|
||||
increasing). For variable time code such excess iterations will be mostly optimized away in
|
||||
section 6.
|
||||
increasing). For variable time code such excess iterations will be mostly optimized away in later
|
||||
sections.
|
||||
|
||||
|
||||
## 4. Avoiding modulus operations
|
||||
|
@ -519,6 +519,20 @@ computation:
|
|||
g >>= 1
|
||||
```
|
||||
|
||||
A variant of divsteps with better worst-case performance can be used instead: starting *δ* at
|
||||
*1/2* instead of *1*. This reduces the worst case number of iterations to *590* for *256*-bit inputs
|
||||
(which can be shown using convex hull analysis). In this case, the substitution *ζ=-(δ+1/2)*
|
||||
is used instead to keep the variable integral. Incrementing *δ* by *1* still translates to
|
||||
decrementing *ζ* by *1*, but negating *δ* now corresponds to going from *ζ* to *-(ζ+1)*, or
|
||||
*~ζ*. Doing that conditionally based on *c3* is simply:
|
||||
|
||||
```python
|
||||
...
|
||||
c3 = c1 & c2
|
||||
zeta ^= c3
|
||||
...
|
||||
```
|
||||
|
||||
By replacing the loop in `divsteps_n_matrix` with a variant of the divstep code above (extended to
|
||||
also apply all *f* operations to *u*, *v* and all *g* operations to *q*, *r*), a constant-time version of
|
||||
`divsteps_n_matrix` is obtained. The full code will be in section 7.
|
||||
|
@ -535,7 +549,8 @@ other cases, it slows down calculations unnecessarily. In this section, we will
|
|||
faster non-constant time `divsteps_n_matrix` function.
|
||||
|
||||
To do so, first consider yet another way of writing the inner loop of divstep operations in
|
||||
`gcd` from section 1. This decomposition is also explained in the paper in section 8.2.
|
||||
`gcd` from section 1. This decomposition is also explained in the paper in section 8.2. We use
|
||||
the original version with initial *δ=1* and *η=-δ* here.
|
||||
|
||||
```python
|
||||
for _ in range(N):
|
||||
|
@ -643,24 +658,24 @@ All together we need the following functions:
|
|||
section 5, extended to handle *u*, *v*, *q*, *r*:
|
||||
|
||||
```python
|
||||
def divsteps_n_matrix(eta, f, g):
|
||||
"""Compute eta and transition matrix t after N divsteps (multiplied by 2^N)."""
|
||||
def divsteps_n_matrix(zeta, f, g):
|
||||
"""Compute zeta and transition matrix t after N divsteps (multiplied by 2^N)."""
|
||||
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
|
||||
for _ in range(N):
|
||||
c1 = eta >> 63
|
||||
c1 = zeta >> 63
|
||||
# Compute x, y, z as conditionally-negated versions of f, u, v.
|
||||
x, y, z = (f ^ c1) - c1, (u ^ c1) - c1, (v ^ c1) - c1
|
||||
c2 = -(g & 1)
|
||||
# Conditionally add x, y, z to g, q, r.
|
||||
g, q, r = g + (x & c2), q + (y & c2), r + (z & c2)
|
||||
c1 &= c2 # reusing c1 here for the earlier c3 variable
|
||||
eta = (eta ^ c1) - (c1 + 1) # inlining the unconditional eta decrement here
|
||||
zeta = (zeta ^ c1) - 1 # inlining the unconditional zeta decrement here
|
||||
# Conditionally add g, q, r to f, u, v.
|
||||
f, u, v = f + (g & c1), u + (q & c1), v + (r & c1)
|
||||
# When shifting g down, don't shift q, r, as we construct a transition matrix multiplied
|
||||
# by 2^N. Instead, shift f's coefficients u and v up.
|
||||
g, u, v = g >> 1, u << 1, v << 1
|
||||
return eta, (u, v, q, r)
|
||||
return zeta, (u, v, q, r)
|
||||
```
|
||||
|
||||
- The functions to update *f* and *g*, and *d* and *e*, from section 2 and section 4, with the constant-time
|
||||
|
@ -702,15 +717,15 @@ def normalize(sign, v, M):
|
|||
return v
|
||||
```
|
||||
|
||||
- And finally the `modinv` function too, adapted to use *η* instead of *δ*, and using the fixed
|
||||
- And finally the `modinv` function too, adapted to use *ζ* instead of *δ*, and using the fixed
|
||||
iteration count from section 5:
|
||||
|
||||
```python
|
||||
def modinv(M, Mi, x):
|
||||
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
|
||||
eta, f, g, d, e = -1, M, x, 0, 1
|
||||
for _ in range((724 + N - 1) // N):
|
||||
eta, t = divsteps_n_matrix(-eta, f % 2**N, g % 2**N)
|
||||
zeta, f, g, d, e = -1, M, x, 0, 1
|
||||
for _ in range((590 + N - 1) // N):
|
||||
zeta, t = divsteps_n_matrix(zeta, f % 2**N, g % 2**N)
|
||||
f, g = update_fg(f, g, t)
|
||||
d, e = update_de(d, e, t, M, Mi)
|
||||
return normalize(f, d, M)
|
||||
|
|
|
@ -168,17 +168,17 @@ typedef struct {
|
|||
int32_t u, v, q, r;
|
||||
} secp256k1_modinv32_trans2x2;
|
||||
|
||||
/* Compute the transition matrix and eta for 30 divsteps.
|
||||
/* Compute the transition matrix and zeta for 30 divsteps.
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Input: zeta: initial zeta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
* Return: final zeta
|
||||
*
|
||||
* Implements the divsteps_n_matrix function from the explanation.
|
||||
*/
|
||||
static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
||||
static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
||||
/* u,v,q,r are the elements of the transformation matrix being built up,
|
||||
* starting with the identity matrix. Semantically they are signed integers
|
||||
* in range [-2^30,2^30], but here represented as unsigned mod 2^32. This
|
||||
|
@ -193,8 +193,8 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t
|
|||
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||
/* Compute conditional masks for (eta < 0) and for (g & 1). */
|
||||
c1 = eta >> 31;
|
||||
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
|
||||
c1 = zeta >> 31;
|
||||
c2 = -(g & 1);
|
||||
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
||||
x = (f ^ c1) - c1;
|
||||
|
@ -204,10 +204,10 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t
|
|||
g += x & c2;
|
||||
q += y & c2;
|
||||
r += z & c2;
|
||||
/* In what follows, c1 is a condition mask for (eta < 0) and (g & 1). */
|
||||
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
|
||||
c1 &= c2;
|
||||
/* Conditionally negate eta, and unconditionally subtract 1. */
|
||||
eta = (eta ^ c1) - (c1 + 1);
|
||||
/* Conditionally change zeta into -zeta-2 or zeta-1. */
|
||||
zeta = (zeta ^ c1) - 1;
|
||||
/* Conditionally add g,q,r to f,u,v. */
|
||||
f += g & c1;
|
||||
u += q & c1;
|
||||
|
@ -216,8 +216,8 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t
|
|||
g >>= 1;
|
||||
u <<= 1;
|
||||
v <<= 1;
|
||||
/* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
|
||||
VERIFY_CHECK(eta >= -751 && eta <= 751);
|
||||
/* Bounds on zeta that follow from the bounds on iteration count (max 20*30 divsteps). */
|
||||
VERIFY_CHECK(zeta >= -601 && zeta <= 601);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int32_t)u;
|
||||
|
@ -229,7 +229,7 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t
|
|||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 30 of them will have determinant 2^30. */
|
||||
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
|
||||
return eta;
|
||||
return zeta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 30 divsteps (variable time).
|
||||
|
@ -453,19 +453,19 @@ static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_sign
|
|||
|
||||
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
|
||||
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
|
||||
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
||||
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
|
||||
secp256k1_modinv32_signed30 d = {{0}};
|
||||
secp256k1_modinv32_signed30 e = {{1}};
|
||||
secp256k1_modinv32_signed30 f = modinfo->modulus;
|
||||
secp256k1_modinv32_signed30 g = *x;
|
||||
int i;
|
||||
int32_t eta = -1;
|
||||
int32_t zeta = -1; /* zeta = -(delta+1/2); delta is initially 1/2. */
|
||||
|
||||
/* Do 25 iterations of 30 divsteps each = 750 divsteps. 724 suffices for 256-bit inputs. */
|
||||
for (i = 0; i < 25; ++i) {
|
||||
/* Compute transition matrix and new eta after 30 divsteps. */
|
||||
/* Do 20 iterations of 30 divsteps each = 600 divsteps. 590 suffices for 256-bit inputs. */
|
||||
for (i = 0; i < 20; ++i) {
|
||||
/* Compute transition matrix and new zeta after 30 divsteps. */
|
||||
secp256k1_modinv32_trans2x2 t;
|
||||
eta = secp256k1_modinv32_divsteps_30(eta, f.v[0], g.v[0], &t);
|
||||
zeta = secp256k1_modinv32_divsteps_30(zeta, f.v[0], g.v[0], &t);
|
||||
/* Update d,e using that transition matrix. */
|
||||
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
|
||||
/* Update f,g using that transition matrix. */
|
||||
|
@ -515,7 +515,7 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
|
|||
int i = 0;
|
||||
#endif
|
||||
int j, len = 9;
|
||||
int32_t eta = -1;
|
||||
int32_t eta = -1; /* eta = -delta; delta is initially 1 (faster for the variable-time code) */
|
||||
int32_t cond, fn, gn;
|
||||
|
||||
/* Do iterations of 30 divsteps each until g=0. */
|
||||
|
|
|
@ -145,17 +145,17 @@ typedef struct {
|
|||
int64_t u, v, q, r;
|
||||
} secp256k1_modinv64_trans2x2;
|
||||
|
||||
/* Compute the transition matrix and eta for 62 divsteps.
|
||||
/* Compute the transition matrix and zeta for 62 divsteps (where zeta=-(delta+1/2)).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Input: zeta: initial zeta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
* Return: final zeta
|
||||
*
|
||||
* Implements the divsteps_n_matrix function from the explanation.
|
||||
*/
|
||||
static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
|
||||
static int64_t secp256k1_modinv64_divsteps_62(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
|
||||
/* u,v,q,r are the elements of the transformation matrix being built up,
|
||||
* starting with the identity matrix. Semantically they are signed integers
|
||||
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
|
||||
|
@ -170,8 +170,8 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t
|
|||
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||
/* Compute conditional masks for (eta < 0) and for (g & 1). */
|
||||
c1 = eta >> 63;
|
||||
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
|
||||
c1 = zeta >> 63;
|
||||
c2 = -(g & 1);
|
||||
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
||||
x = (f ^ c1) - c1;
|
||||
|
@ -181,10 +181,10 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t
|
|||
g += x & c2;
|
||||
q += y & c2;
|
||||
r += z & c2;
|
||||
/* In what follows, c1 is a condition mask for (eta < 0) and (g & 1). */
|
||||
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
|
||||
c1 &= c2;
|
||||
/* Conditionally negate eta, and unconditionally subtract 1. */
|
||||
eta = (eta ^ c1) - (c1 + 1);
|
||||
/* Conditionally change zeta into -zeta-2 or zeta-1. */
|
||||
zeta = (zeta ^ c1) - 1;
|
||||
/* Conditionally add g,q,r to f,u,v. */
|
||||
f += g & c1;
|
||||
u += q & c1;
|
||||
|
@ -193,8 +193,8 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t
|
|||
g >>= 1;
|
||||
u <<= 1;
|
||||
v <<= 1;
|
||||
/* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
|
||||
VERIFY_CHECK(eta >= -745 && eta <= 745);
|
||||
/* Bounds on zeta that follow from the bounds on iteration count (max 10*62 divsteps). */
|
||||
VERIFY_CHECK(zeta >= -621 && zeta <= 621);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int64_t)u;
|
||||
|
@ -206,10 +206,10 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t
|
|||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 62 of them will have determinant 2^62. */
|
||||
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
|
||||
return eta;
|
||||
return zeta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 62 divsteps (variable time).
|
||||
/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
|
@ -455,19 +455,19 @@ static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_sign
|
|||
|
||||
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
|
||||
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
|
||||
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
||||
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
|
||||
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
|
||||
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
|
||||
secp256k1_modinv64_signed62 f = modinfo->modulus;
|
||||
secp256k1_modinv64_signed62 g = *x;
|
||||
int i;
|
||||
int64_t eta = -1;
|
||||
int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
|
||||
|
||||
/* Do 12 iterations of 62 divsteps each = 744 divsteps. 724 suffices for 256-bit inputs. */
|
||||
for (i = 0; i < 12; ++i) {
|
||||
/* Compute transition matrix and new eta after 62 divsteps. */
|
||||
/* Do 10 iterations of 62 divsteps each = 620 divsteps. 590 suffices for 256-bit inputs. */
|
||||
for (i = 0; i < 10; ++i) {
|
||||
/* Compute transition matrix and new zeta after 62 divsteps. */
|
||||
secp256k1_modinv64_trans2x2 t;
|
||||
eta = secp256k1_modinv64_divsteps_62(eta, f.v[0], g.v[0], &t);
|
||||
zeta = secp256k1_modinv64_divsteps_62(zeta, f.v[0], g.v[0], &t);
|
||||
/* Update d,e using that transition matrix. */
|
||||
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
|
||||
/* Update f,g using that transition matrix. */
|
||||
|
@ -517,7 +517,7 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
|
|||
int i = 0;
|
||||
#endif
|
||||
int j, len = 5;
|
||||
int64_t eta = -1;
|
||||
int64_t eta = -1; /* eta = -delta; delta is initially 1 */
|
||||
int64_t cond, fn, gn;
|
||||
|
||||
/* Do iterations of 62 divsteps each until g=0. */
|
||||
|
|
Loading…
Reference in New Issue