research/zksnark/bn128_pairing.py

73 lines
2.4 KiB
Python
Raw Normal View History

2016-12-25 01:01:01 +00:00
from bn128_curve import double, add, multiply, is_on_curve, neg, twist, b, b2, b12, curve_order, G1, G2, G12
from bn128_field_elements import field_modulus, FQ
from optimized_field_elements import FQ2, FQ12
2016-12-24 17:32:04 +00:00
ate_loop_count = 29793968203157093288
log_ate_loop_count = 63
2016-12-24 17:32:04 +00:00
# Create a function representing the line between P1 and P2,
# and evaluate it at T
def linefunc(P1, P2, T):
assert P1 and P2 and T # No points-at-infinity allowed, sorry
2016-12-24 17:32:04 +00:00
x1, y1 = P1
x2, y2 = P2
xt, yt = T
if x1 != x2:
m = (y2 - y1) / (x2 - x1)
2016-12-25 01:01:01 +00:00
return m * (xt - x1) - (yt - y1)
2016-12-24 17:32:04 +00:00
elif y1 == y2:
m = 3 * x1**2 / (2 * y1)
2016-12-25 01:01:01 +00:00
return m * (xt - x1) - (yt - y1)
2016-12-24 17:32:04 +00:00
else:
return xt - x1
def cast_point_to_fq12(pt):
if pt is None:
return None
x, y = pt
return (FQ12([x.n] + [0] * 11), FQ12([y.n] + [0] * 11))
# Check consistency of the "line function"
one, two, three = G1, double(G1), multiply(G1, 3)
negone, negtwo, negthree = multiply(G1, curve_order - 1), multiply(G1, curve_order - 2), multiply(G1, curve_order - 3)
2016-12-24 17:32:04 +00:00
assert linefunc(one, two, one) == FQ(0)
assert linefunc(one, two, two) == FQ(0)
assert linefunc(one, two, three) != FQ(0)
assert linefunc(one, two, negthree) == FQ(0)
2016-12-24 17:32:04 +00:00
assert linefunc(one, negone, one) == FQ(0)
assert linefunc(one, negone, negone) == FQ(0)
assert linefunc(one, negone, two) != FQ(0)
assert linefunc(one, one, one) == FQ(0)
assert linefunc(one, one, two) != FQ(0)
assert linefunc(one, one, negtwo) == FQ(0)
2016-12-24 17:32:04 +00:00
# Main miller loop
def miller_loop(Q, P):
if Q is None or P is None:
return FQ12.one()
2016-12-24 17:32:04 +00:00
R = Q
f = FQ12.one()
for i in range(log_ate_loop_count, -1, -1):
f = f * f * linefunc(R, R, P)
2016-12-24 17:32:04 +00:00
R = double(R)
if ate_loop_count & (2**i):
f = f * linefunc(R, Q, P)
R = add(R, Q)
# assert R == multiply(Q, ate_loop_count)
2016-12-24 17:32:04 +00:00
Q1 = (Q[0] ** field_modulus, Q[1] ** field_modulus)
# assert is_on_curve(Q1, b12)
nQ2 = (Q1[0] ** field_modulus, -Q1[1] ** field_modulus)
# assert is_on_curve(nQ2, b12)
2016-12-24 17:32:04 +00:00
f = f * linefunc(R, Q1, P)
R = add(R, Q1)
f = f * linefunc(R, nQ2, P)
# R = add(R, nQ2) This line is in many specifications but it technically does nothing
2017-02-07 13:39:28 +00:00
return f ** ((field_modulus ** 12 - 1) // curve_order)
2016-12-24 17:32:04 +00:00
# Pairing computation
def pairing(Q, P):
assert is_on_curve(Q, b2)
assert is_on_curve(P, b)
return miller_loop(twist(Q), cast_point_to_fq12(P))