Added optimized FQ12 implementation, now 7x more efficient
This commit is contained in:
parent
9a7b6825b0
commit
78f5968333
|
@ -1,5 +1,6 @@
|
|||
from bn128_field_elements import field_modulus, FQ
|
||||
from optimized_field_elements import FQ2, FQ12
|
||||
# from bn128_field_elements import FQ2, FQ12
|
||||
|
||||
curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
||||
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
from bn128_curve import double, add, multiply, is_on_curve, neg, twist, b, b2, b12, curve_order, G1, G2, G12
|
||||
from bn128_field_elements import field_modulus, FQ, FQ2, FQ12, FQcomplex
|
||||
from bn128_field_elements import field_modulus, FQ
|
||||
from optimized_field_elements import FQ2, FQ12, FQcomplex
|
||||
# from bn128_field_elements import FQ2, FQ12, FQcomplex
|
||||
|
||||
ate_loop_count = 29793968203157093288
|
||||
log_ate_loop_count = 63
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from bn128_pairing import pairing, neg, G2, G1, multiply, FQ12, curve_order
|
||||
|
||||
print('Starting tests')
|
||||
p1 = pairing(G2, G1)
|
||||
pn1 = pairing(G2, neg(G1))
|
||||
assert p1 * pn1 == FQ12.one()
|
||||
|
|
|
@ -0,0 +1,176 @@
|
|||
field_modulus = 21888242871839275222246405745257275088696311157297823662689037894645226208583
|
||||
FQ2_modulus_coeffs = [82, -18] # Implied + [1]
|
||||
FQ12_modulus_coeffs = [82, 0, 0, 0, 0, 0, -18, 0, 0, 0, 0, 0] # Implied + [1]
|
||||
|
||||
# python3 compatibility
|
||||
try:
|
||||
foo = long
|
||||
except:
|
||||
long = int
|
||||
|
||||
# Extended euclidean algorithm to find modular inverses for
|
||||
# integers
|
||||
def prime_field_inv(a, n):
|
||||
if a == 0:
|
||||
return 0
|
||||
lm, hm = 1, 0
|
||||
low, high = a % n, n
|
||||
while low > 1:
|
||||
r = high//low
|
||||
nm, new = hm-lm*r, high-low*r
|
||||
lm, low, hm, high = nm, new, lm, low
|
||||
return lm % n
|
||||
|
||||
# Utility methods for polynomial math
|
||||
def deg(p):
|
||||
d = len(p) - 1
|
||||
while p[d] == 0 and d:
|
||||
d -= 1
|
||||
return d
|
||||
|
||||
def poly_rounded_div(a, b):
|
||||
dega = deg(a)
|
||||
degb = deg(b)
|
||||
temp = [x for x in a]
|
||||
o = [0 for x in a]
|
||||
for i in range(dega - degb, -1, -1):
|
||||
o[i] = (o[i] + temp[degb + i] * prime_field_inv(b[degb], field_modulus))
|
||||
for c in range(degb + 1):
|
||||
temp[c + i] = (temp[c + i] - o[c])
|
||||
return [x % field_modulus for x in o[:deg(o)+1]]
|
||||
|
||||
# A class for elements in polynomial extension fields
|
||||
class FQP():
|
||||
def __init__(self, coeffs, modulus_coeffs):
|
||||
assert len(coeffs) == len(modulus_coeffs)
|
||||
self.coeffs = coeffs
|
||||
# The coefficients of the modulus, without the leading [1]
|
||||
self.modulus_coeffs = modulus_coeffs
|
||||
# The degree of the extension field
|
||||
self.degree = len(self.modulus_coeffs)
|
||||
|
||||
def __add__(self, other):
|
||||
assert isinstance(other, self.__class__)
|
||||
return self.__class__([(x+y) % field_modulus for x,y in zip(self.coeffs, other.coeffs)])
|
||||
|
||||
def __sub__(self, other):
|
||||
assert isinstance(other, self.__class__)
|
||||
return self.__class__([(x-y) % field_modulus for x,y in zip(self.coeffs, other.coeffs)])
|
||||
|
||||
def __mul__(self, other):
|
||||
if isinstance(other, (int, long)):
|
||||
return self.__class__([c * other % field_modulus for c in self.coeffs])
|
||||
else:
|
||||
assert isinstance(other, self.__class__)
|
||||
b = [0 for i in range(self.degree * 2 - 1)]
|
||||
for i in range(self.degree):
|
||||
for j in range(self.degree):
|
||||
b[i + j] += self.coeffs[i] * other.coeffs[j]
|
||||
while len(b) > self.degree:
|
||||
exp, top = len(b) - self.degree - 1, b.pop()
|
||||
for i in range(self.degree):
|
||||
b[exp + i] -= top * self.modulus_coeffs[i]
|
||||
return self.__class__([x % field_modulus for x in b])
|
||||
|
||||
def __rmul__(self, other):
|
||||
return self * other
|
||||
|
||||
def __div__(self, other):
|
||||
if isinstance(other, (int, long)):
|
||||
return self.__class__([c * prime_field_inv(other, field_modulus) % field_modulus for c in self.coeffs])
|
||||
else:
|
||||
assert isinstance(other, self.__class__)
|
||||
return self * other.inv()
|
||||
|
||||
def __truediv__(self, other):
|
||||
return self.__div__(other)
|
||||
|
||||
def __pow__(self, other):
|
||||
if other == 0:
|
||||
return self.__class__([1] + [0] * (self.degree - 1))
|
||||
elif other == 1:
|
||||
return self.__class__(self.coeffs)
|
||||
elif other % 2 == 0:
|
||||
return (self * self) ** (other // 2)
|
||||
else:
|
||||
return ((self * self) ** int(other // 2)) * self
|
||||
|
||||
# Extended euclidean algorithm used to find the modular inverse
|
||||
def inv(self):
|
||||
lm, hm = [1] + [0] * self.degree, [0] * (self.degree + 1)
|
||||
low, high = self.coeffs + [0], self.modulus_coeffs + [1]
|
||||
while deg(low):
|
||||
r = poly_rounded_div(high, low)
|
||||
r += [0] * (self.degree + 1 - len(r))
|
||||
nm = [x for x in hm]
|
||||
new = [x for x in high]
|
||||
# assert len(lm) == len(hm) == len(low) == len(high) == len(nm) == len(new) == self.degree + 1
|
||||
for i in range(self.degree + 1):
|
||||
for j in range(self.degree + 1 - i):
|
||||
nm[i+j] -= lm[i] * r[j]
|
||||
new[i+j] -= low[i] * r[j]
|
||||
nm = [x % field_modulus for x in nm]
|
||||
new = [x % field_modulus for x in new]
|
||||
lm, low, hm, high = nm, new, lm, low
|
||||
return self.__class__(lm[:self.degree]) / low[0]
|
||||
|
||||
def __repr__(self):
|
||||
return repr(self.coeffs)
|
||||
|
||||
def __eq__(self, other):
|
||||
assert isinstance(other, self.__class__)
|
||||
for c1, c2 in zip(self.coeffs, other.coeffs):
|
||||
if c1 != c2:
|
||||
return False
|
||||
return True
|
||||
|
||||
def __ne__(self, other):
|
||||
return not self == other
|
||||
|
||||
def __neg__(self):
|
||||
return self.__class__([-c for c in self.coeffs])
|
||||
|
||||
@classmethod
|
||||
def one(cls):
|
||||
return cls([1] + [0] * (cls.degree - 1))
|
||||
|
||||
@classmethod
|
||||
def zero(cls):
|
||||
return cls([0] * cls.degree)
|
||||
|
||||
# The quadratic extension field
|
||||
class FQ2(FQP):
|
||||
def __init__(self, coeffs):
|
||||
self.coeffs = coeffs
|
||||
self.modulus_coeffs = FQ2_modulus_coeffs
|
||||
self.degree = 2
|
||||
self.__class__.degree = 2
|
||||
|
||||
x = FQ2([1, 0])
|
||||
f = FQ2([1, 2])
|
||||
fpx = FQ2([2, 2])
|
||||
one = FQ2.one()
|
||||
|
||||
# Check that the field works fine
|
||||
assert x + f == fpx
|
||||
assert f / f == one
|
||||
assert one / f + x / f == (one + x) / f
|
||||
assert one * f + x * f == (one + x) * f
|
||||
assert x ** (field_modulus ** 2 - 1) == one
|
||||
|
||||
|
||||
# The quadratic extension field
|
||||
class FQcomplex(FQP):
|
||||
def __init__(self, coeffs):
|
||||
self.coeffs = coeffs
|
||||
self.modulus_coeffs = [1, 0]
|
||||
self.degree = 2
|
||||
self.__class__.degree = 2
|
||||
|
||||
# The 12th-degree extension field
|
||||
class FQ12(FQP):
|
||||
def __init__(self, coeffs):
|
||||
self.coeffs = coeffs
|
||||
self.modulus_coeffs = FQ12_modulus_coeffs
|
||||
self.degree = 12
|
||||
self.__class__.degree = 12
|
Loading…
Reference in New Issue