research/zksnark/bn128_curve.py

120 lines
3.8 KiB
Python
Raw Normal View History

2017-02-07 08:45:22 -05:00
from bn128_field_elements import field_modulus, FQ
from optimized_field_elements import FQ2, FQ12
# from bn128_field_elements import FQ2, FQ12
curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617
2016-12-24 20:01:01 -05:00
# Curve order should be prime
assert pow(2, curve_order, curve_order) == 2
# Curve order should be a factor of field_modulus**12 - 1
assert (field_modulus ** 12 - 1) % curve_order == 0
# Curve is y**2 = x**3 + 3
b = FQ(3)
2016-12-24 20:01:01 -05:00
# Twisted curve over FQ**2
b2 = FQ2([3, 0]) / FQ2([9, 1])
2016-12-24 20:01:01 -05:00
# Extension curve over FQ**12; same b value as over FQ
b12 = FQ12([3] + [0] * 11)
2016-12-24 20:01:01 -05:00
# Generator for curve over FQ
G1 = (FQ(1), FQ(2))
2016-12-24 20:01:01 -05:00
# Generator for twisted curve over FQ2
G2 = (FQ2([10857046999023057135944570762232829481370756359578518086990519993285655852781, 11559732032986387107991004021392285783925812861821192530917403151452391805634]),
FQ2([8495653923123431417604973247489272438418190587263600148770280649306958101930, 4082367875863433681332203403145435568316851327593401208105741076214120093531]))
# Check that a point is on the curve defined by y**2 == x**3 + b
def is_on_curve(pt, b):
if pt is None:
return True
x, y = pt
return y**2 - x**3 == b
assert is_on_curve(G1, b)
assert is_on_curve(G2, b2)
# Elliptic curve doubling
def double(pt):
x, y = pt
l = 3 * x**2 / (2 * y)
newx = l**2 - 2 * x
newy = -l * newx + l * x - y
return newx, newy
# Elliptic curve addition
def add(p1, p2):
if p1 is None or p2 is None:
return p1 if p2 is None else p2
x1, y1 = p1
x2, y2 = p2
if x2 == x1 and y2 == y1:
return double(p1)
elif x2 == x1:
return None
else:
l = (y2 - y1) / (x2 - x1)
newx = l**2 - x1 - x2
newy = -l * newx + l * x1 - y1
assert newy == (-l * newx + l * x2 - y2)
return (newx, newy)
# Elliptic curve point multiplication
def multiply(pt, n):
if n == 0:
return None
elif n == 1:
return pt
elif not n % 2:
2017-02-07 08:39:28 -05:00
return multiply(double(pt), n // 2)
else:
2017-02-07 08:39:28 -05:00
return add(multiply(double(pt), int(n // 2)), pt)
# Check that the G1 curve works fine
assert add(add(double(G1), G1), G1) == double(double(G1))
assert double(G1) != G1
assert add(multiply(G1, 9), multiply(G1, 5)) == add(multiply(G1, 12), multiply(G1, 2))
assert multiply(G1, curve_order) is None
# Check that the G2 curve works fine
assert add(add(double(G2), G2), G2) == double(double(G2))
assert double(G2) != G2
assert add(multiply(G2, 9), multiply(G2, 5)) == add(multiply(G2, 12), multiply(G2, 2))
2016-12-24 20:01:01 -05:00
assert multiply(G2, curve_order) is None
assert multiply(G2, 2 * field_modulus - curve_order) is not None
2016-12-24 20:01:01 -05:00
assert is_on_curve(multiply(G2, 9), b2)
# "Twist" a point in E(FQ2) into a point in E(FQ12)
w = FQ12([0, 1] + [0] * 10)
2016-12-24 20:01:01 -05:00
# Convert P => -P
def neg(pt):
if pt is None:
return None
x, y = pt
return (x, -y)
def twist(pt):
if pt is None:
return None
_x, _y = pt
# Field isomorphism from Z[p] / x**2 to Z[p] / x**2 - 18*x + 82
xcoeffs = [_x.coeffs[0] - _x.coeffs[1] * 9, _x.coeffs[1]]
ycoeffs = [_y.coeffs[0] - _y.coeffs[1] * 9, _y.coeffs[1]]
# Isomorphism into subfield of Z[p] / w**12 - 18 * w**6 + 82,
# where w**6 = x
nx = FQ12([xcoeffs[0]] + [0] * 5 + [xcoeffs[1]] + [0] * 5)
ny = FQ12([ycoeffs[0]] + [0] * 5 + [ycoeffs[1]] + [0] * 5)
# Divide x coord by w**2 and y coord by w**3
2016-12-24 20:01:01 -05:00
return (nx * w **2, ny * w**3)
# Check that the twist creates a point that is on the curve
assert is_on_curve(twist(G2), b12)
# Check that the G12 curve works fine
G12 = twist(G2)
assert add(add(double(G12), G12), G12) == double(double(G12))
assert double(G12) != G12
assert add(multiply(G12, 9), multiply(G12, 5)) == add(multiply(G12, 12), multiply(G12, 2))
2016-12-24 20:01:01 -05:00
assert is_on_curve(multiply(G12, 9), b12)
assert multiply(G12, curve_order) is None