realm-js/parser/parser.cpp

651 lines
21 KiB
C++
Raw Normal View History

2015-11-09 19:29:57 +00:00
////////////////////////////////////////////////////////////////////////////
//
// Copyright 2015 Realm Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////
#include "parser.hpp"
2015-11-06 00:21:19 +00:00
#include <iostream>
#include <pegtl.hh>
2015-11-06 16:23:23 +00:00
#include <pegtl/analyze.hh>
#include <pegtl/trace.hh>
2015-11-06 00:21:19 +00:00
2015-11-10 05:12:18 +00:00
#include <realm.hpp>
#include "object_store.hpp"
#include "schema.hpp"
2015-11-06 00:21:19 +00:00
using namespace pegtl;
2015-11-09 19:29:57 +00:00
namespace realm {
namespace parser {
// strings
struct unicode : list< seq< one< 'u' >, rep< 4, must< xdigit > > >, one< '\\' > > {};
struct escaped_char : one< '"', '\\', '/', 'b', 'f', 'n', 'r', 't' > {};
struct escaped : sor< escaped_char, unicode > {};
struct unescaped : utf8::range< 0x20, 0x10FFFF > {};
struct char_ : if_then_else< one< '\\' >, must< escaped >, unescaped > {};
struct string_content : until< at< one< '"' > >, must< char_ > > {};
struct string : seq< one< '"' >, must< string_content >, any >
2015-11-06 00:21:19 +00:00
{
2015-11-09 19:29:57 +00:00
using content = string_content;
};
// numbers
struct minus : opt< one< '-' > > {};
struct dot : one< '.' > {};
struct float_num : sor<
seq< plus< digit >, dot, star< digit > >,
seq< star< digit >, dot, plus< digit > >
> {};
struct hex_num : seq< one< '0' >, one< 'x', 'X' >, plus< xdigit > > {};
struct int_num : plus< digit > {};
struct number : seq< minus, sor< float_num, hex_num, int_num > > {};
// key paths
struct key_path : list< seq< sor< alpha, one< '_' > >, star< sor< alnum, one< '_', '-' > > > >, one< '.' > > {};
// expressions and operators
struct expr : sor< string, key_path, number > {};
struct eq : sor< two< '=' >, one< '=' > > {};
struct noteq : pegtl::string< '!', '=' > {};
struct lteq : pegtl::string< '<', '=' > {};
struct lt : one< '<' > {};
struct gteq : pegtl::string< '>', '=' > {};
struct gt : one< '<' > {};
struct begins : istring< 'b', 'e', 'g', 'i', 'n', 's', 'w', 'i', 't', 'h' > {};
struct ends : istring< 'e', 'n', 'd', 's', 'w', 'i', 't', 'h' > {};
struct contains : istring< 'c', 'o', 'n', 't', 'a', 'i', 'n', 's' > {};
struct oper : sor< eq, noteq, lteq, lt, gteq, gt, begins, ends, contains > {};
// predicates
struct comparison_pred : seq< expr, pad< oper, blank >, expr > {};
struct pred;
struct group_pred : if_must< one< '(' >, pad< pred, blank >, one< ')' > > {};
struct not_pre : sor< seq< one< '!' >, star< blank > >, seq< istring< 'N', 'O', 'T' >, plus< blank > > > {};
struct atom_pred : seq< opt< not_pre >, pad< sor< group_pred, comparison_pred >, blank > > {};
struct and_op : sor< two< '&' >, istring< 'A', 'N', 'D' > > {};
struct or_op : sor< two< '|' >, istring< 'O', 'R' > > {};
struct or_ext : seq< pad< or_op, blank >, pred > {};
struct and_ext : seq< pad< and_op, blank >, pred > {};
struct and_pred : seq< atom_pred, star< and_ext > > {};
struct pred : seq< and_pred, star< or_ext > > {};
// state
struct ParserState
{
std::vector<Predicate *> predicate_stack;
Predicate *current() { return predicate_stack.back(); }
2015-11-09 20:20:59 +00:00
bool negate_next;
2015-11-09 19:29:57 +00:00
void addExpression(Expression exp)
2015-11-06 16:23:23 +00:00
{
2015-11-09 19:29:57 +00:00
if (current()->type == Predicate::Type::Comparison) {
current()->sub_expressions.emplace_back(std::move(exp));
predicate_stack.pop_back();
}
else {
Predicate p;
p.type = Predicate::Type::Comparison;
p.sub_expressions.emplace_back(std::move(exp));
2015-11-09 20:20:59 +00:00
if (negate_next) {
p.negate = true;
negate_next = false;
}
2015-11-09 19:29:57 +00:00
current()->sub_predicates.emplace_back(std::move(p));
predicate_stack.push_back(&current()->sub_predicates.back());
2015-11-06 16:23:23 +00:00
}
2015-11-09 19:29:57 +00:00
}
};
// rules
template< typename Rule >
struct action : nothing< Rule > {};
2015-11-06 16:23:23 +00:00
2015-11-09 19:29:57 +00:00
template<> struct action< and_ext >
{
static void apply( const input & in, ParserState & state )
2015-11-06 16:23:23 +00:00
{
2015-11-09 19:29:57 +00:00
std::cout << "<and>" << in.string() << std::endl;
2015-11-09 20:13:01 +00:00
// if we were put into an OR group we need to rearrange
auto current = state.current();
if (current->type == Predicate::Type::Or) {
auto &sub_preds = state.current()->sub_predicates;
auto second_last = sub_preds[sub_preds.size()-2];
if (second_last.type == Predicate::Type::And) {
// if we are in an OR group and second to last predicate group is
// an AND group then move the last predicate inside
second_last.sub_predicates.push_back(sub_preds.back());
sub_preds.pop_back();
}
else {
// otherwise combine last two into a new AND group
Predicate pred;
pred.type = Predicate::Type::And;
pred.sub_predicates = { second_last, sub_preds.back() };
sub_preds.pop_back();
sub_preds.pop_back();
sub_preds.push_back(pred);
}
}
2015-11-09 19:29:57 +00:00
}
};
2015-11-06 16:23:23 +00:00
2015-11-09 19:29:57 +00:00
template<> struct action< or_ext >
{
static void apply( const input & in, ParserState & state )
2015-11-06 00:21:19 +00:00
{
2015-11-09 19:29:57 +00:00
std::cout << "<or>" << in.string() << std::endl;
2015-11-09 20:13:01 +00:00
// if already an OR group do nothing
auto current = state.current();
if (current->type == Predicate::Type::Or) {
return;
}
// if only two predicates in the group, then convert to OR
auto &sub_preds = state.current()->sub_predicates;
if (sub_preds.size()) {
current->type = Predicate::Type::Or;
return;
}
// split the current group into to groups which are ORed together
Predicate pred1, pred2;
pred1.type = Predicate::Type::And;
pred2.type = Predicate::Type::And;
pred1.sub_predicates.insert(sub_preds.begin(), sub_preds.back());
pred2.sub_predicates.push_back(sub_preds.back());
current->type = Predicate::Type::Or;
sub_preds = { pred1, pred2 };
2015-11-09 19:29:57 +00:00
}
};
2015-11-06 16:23:23 +00:00
2015-11-09 19:29:57 +00:00
template<> struct action< string >
{
static void apply( const input & in, ParserState & state )
2015-11-09 16:27:27 +00:00
{
2015-11-09 19:29:57 +00:00
std::cout << in.string() << std::endl;
Expression exp;
exp.type = Expression::Type::String;
exp.s = in.string();
2015-11-09 16:27:27 +00:00
2015-11-09 19:29:57 +00:00
state.addExpression(exp);
}
};
template<> struct action< key_path >
{
static void apply( const input & in, ParserState & state )
2015-11-06 16:23:23 +00:00
{
2015-11-09 19:29:57 +00:00
std::cout << in.string() << std::endl;
2015-11-09 16:27:27 +00:00
2015-11-09 19:29:57 +00:00
Expression exp;
exp.type = Expression::Type::KeyPath;
exp.s = in.string();
state.addExpression(std::move(exp));
}
};
template<> struct action< number >
{
static void apply( const input & in, ParserState & state )
2015-11-09 16:27:27 +00:00
{
2015-11-09 19:29:57 +00:00
std::cout << in.string() << std::endl;
Expression exp;
exp.type = Expression::Type::Number;
exp.s = in.string();
state.addExpression(std::move(exp));
}
};
#define OPERATOR_ACTION(rule, oper) \
template<> struct action< rule > { \
static void apply( const input & in, ParserState & state ) { \
std::cout << in.string() << std::endl; \
state.current()->op = oper; }};
OPERATOR_ACTION(eq, Predicate::Operator::Equal)
OPERATOR_ACTION(noteq, Predicate::Operator::NotEqual)
OPERATOR_ACTION(gteq, Predicate::Operator::GreaterThanOrEqual)
OPERATOR_ACTION(gt, Predicate::Operator::GreaterThan)
OPERATOR_ACTION(lteq, Predicate::Operator::LessThanOrEqual)
OPERATOR_ACTION(lt, Predicate::Operator::LessThan)
OPERATOR_ACTION(begins, Predicate::Operator::BeginsWith)
OPERATOR_ACTION(ends, Predicate::Operator::EndsWith)
OPERATOR_ACTION(contains, Predicate::Operator::Contains)
template<> struct action< one< '(' > >
{
static void apply( const input & in, ParserState & state )
{
std::cout << "<begin_group>" << std::endl;
2015-11-06 00:21:19 +00:00
2015-11-09 19:29:57 +00:00
Predicate group;
group.type = Predicate::Type::And;
2015-11-09 20:20:59 +00:00
if (state.negate_next) {
group.negate = true;
state.negate_next = false;
}
2015-11-09 19:29:57 +00:00
state.current()->sub_predicates.emplace_back(std::move(group));
state.predicate_stack.push_back(&state.current()->sub_predicates.back());
}
};
template<> struct action< group_pred >
{
static void apply( const input & in, ParserState & state )
{
std::cout << "<end_group>" << std::endl;
state.predicate_stack.pop_back();
}
};
template<> struct action< not_pre >
2015-11-06 00:21:19 +00:00
{
2015-11-09 19:29:57 +00:00
static void apply( const input & in, ParserState & state )
{
std::cout << "<not>" << std::endl;
2015-11-09 20:20:59 +00:00
state.negate_next = true;
2015-11-06 00:21:19 +00:00
}
2015-11-09 19:29:57 +00:00
};
Predicate parse(const std::string &query)
{
analyze< pred >();
const std::string source = "user query";
Predicate out_predicate;
out_predicate.type = Predicate::Type::And;
ParserState state;
state.predicate_stack.push_back(&out_predicate);
pegtl::parse< must< pred, eof >, action >(query, source, state);
2015-11-10 05:12:18 +00:00
if (out_predicate.type == Predicate::Type::And && out_predicate.sub_predicates.size() == 1) {
return out_predicate.sub_predicates.back();
}
2015-11-09 19:29:57 +00:00
return out_predicate;
2015-11-06 00:21:19 +00:00
}
2015-11-10 05:12:18 +00:00
// check a precondition and throw an exception if it is not met
// this should be used iff the condition being false indicates a bug in the caller
// of the function checking its preconditions
static void precondition(bool condition, const std::string message) {
if (__builtin_expect(condition, 1)) {
return;
}
throw std::runtime_error(message);
}
// FIXME: TrueExpression and FalseExpression should be supported by core in some way
struct TrueExpression : realm::Expression {
size_t find_first(size_t start, size_t end) const override
{
if (start != end)
return start;
return not_found;
}
void set_table() override {}
const Table* get_table() const override { return nullptr; }
};
struct FalseExpression : realm::Expression {
size_t find_first(size_t, size_t) const override { return not_found; }
void set_table() override {}
const Table* get_table() const override { return nullptr; }
};
// add a clause for numeric constraints based on operator type
template <typename A, typename B>
void add_numeric_constraint_to_query(Query& query,
PropertyType datatype,
Predicate::Operator operatorType,
A lhs,
B rhs)
{
switch (operatorType) {
case Predicate::Operator::LessThan:
query.and_query(lhs < rhs);
break;
case Predicate::Operator::LessThanOrEqual:
query.and_query(lhs <= rhs);
break;
case Predicate::Operator::GreaterThan:
query.and_query(lhs > rhs);
break;
case Predicate::Operator::GreaterThanOrEqual:
query.and_query(lhs >= rhs);
break;
case Predicate::Operator::Equal:
query.and_query(lhs == rhs);
break;
case Predicate::Operator::NotEqual:
query.and_query(lhs != rhs);
break;
default:
throw std::runtime_error("Unsupported operator for numeric queries.");
}
}
template <typename A, typename B>
void add_bool_constraint_to_query(Query &query, Predicate::Operator operatorType, A lhs, B rhs) {
switch (operatorType) {
case Predicate::Operator::Equal:
query.and_query(lhs == rhs);
break;
case Predicate::Operator::NotEqual:
query.and_query(lhs != rhs);
break;
default:
throw std::runtime_error("Unsupported operator for numeric queries.");
}
}
void add_string_constraint_to_query(Query &query,
Predicate::Operator op,
Columns<String> &&column,
StringData value) {
bool case_sensitive = true;
StringData sd = value;
switch (op) {
case Predicate::Operator::BeginsWith:
query.and_query(column.begins_with(sd, case_sensitive));
break;
case Predicate::Operator::EndsWith:
query.and_query(column.ends_with(sd, case_sensitive));
break;
case Predicate::Operator::Contains:
query.and_query(column.contains(sd, case_sensitive));
break;
case Predicate::Operator::Equal:
query.and_query(column.equal(sd, case_sensitive));
break;
case Predicate::Operator::NotEqual:
query.and_query(column.not_equal(sd, case_sensitive));
break;
default:
throw std::runtime_error("Unsupported operator for string queries.");
}
}
void add_string_constraint_to_query(realm::Query& query,
Predicate::Operator op,
StringData value,
Columns<String> &&column) {
bool case_sensitive = true;
StringData sd = value;
switch (op) {
case Predicate::Operator::Equal:
query.and_query(column.equal(sd, case_sensitive));
break;
case Predicate::Operator::NotEqual:
query.and_query(column.not_equal(sd, case_sensitive));
break;
default:
throw std::runtime_error("Substring comparison not supported for keypath substrings.");
}
}
template <typename RequestedType, typename TableGetter>
struct ColumnOfTypeHelper {
static Columns<RequestedType> convert(TableGetter&& table, unsigned int idx)
{
return table()->template column<RequestedType>(idx);
}
};
template <typename TableGetter>
struct ColumnOfTypeHelper<DateTime, TableGetter> {
static Columns<Int> convert(TableGetter&& table, unsigned int idx)
{
return table()->template column<Int>(idx);
}
};
template <typename RequestedType, typename TableGetter>
struct ValueOfTypeHelper;
template <typename TableGetter>
struct ValueOfTypeHelper<DateTime, TableGetter> {
static Int convert(TableGetter&&, const std::string & value)
{
assert(0);
}
};
template <typename TableGetter>
struct ValueOfTypeHelper<bool, TableGetter> {
static bool convert(TableGetter&&, const std::string & value)
{
assert(0);
}
};
template <typename TableGetter>
struct ValueOfTypeHelper<Double, TableGetter> {
static Double convert(TableGetter&&, const std::string & value)
{
return std::stod(value);
}
};
template <typename TableGetter>
struct ValueOfTypeHelper<Float, TableGetter> {
static Float convert(TableGetter&&, const std::string & value)
{
return std::stof(value);
}
};
template <typename TableGetter>
struct ValueOfTypeHelper<Int, TableGetter> {
static Int convert(TableGetter&&, const std::string & value)
{
return std::stoll(value);
}
};
template <typename TableGetter>
struct ValueOfTypeHelper<String, TableGetter> {
static std::string convert(TableGetter&&, const std::string & value)
{
return value;
}
};
template <typename RequestedType, typename Value, typename TableGetter>
auto value_of_type_for_query(TableGetter&& tables, Value&& value)
{
const bool isColumnIndex = std::is_same<size_t, typename std::remove_reference<Value>::type>::value;
using helper = std::conditional_t<isColumnIndex,
ColumnOfTypeHelper<RequestedType, TableGetter>,
ValueOfTypeHelper<RequestedType, TableGetter>>;
return helper::convert(std::forward<TableGetter>(tables), std::forward<Value>(value));
}
std::vector<std::string> &split(const std::string &s, char delim, std::vector<std::string> &elems) {
std::stringstream ss(s);
std::string item;
while (std::getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}
std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
split(s, delim, elems);
return elems;
}
Property *get_property_from_key_path(Schema &schema, ObjectSchema &desc, const std::string &key_path, std::vector<size_t> &indexes)
{
Property *prop = nullptr;
auto paths = split(key_path, '.');
for (size_t index = 0; index < paths.size(); index++) {
prop = desc.property_for_name(paths[index]);
precondition(prop != nullptr, "No property '" + paths[index] + "' on object of type '" + desc.name + "'");
precondition(index == paths.size() - 1 || prop->type == PropertyTypeObject || prop->type == PropertyTypeArray,
(std::string)"Property '" + paths[index] + "' is not a link in object of type '" + desc.name + "'");
indexes.push_back(prop->table_column);
desc = *schema.find(prop->object_type);
}
return prop;
}
template <typename... T>
void do_add_comparison_to_query(Query &query, Schema &schema, ObjectSchema &object_schema, Property *prop,
Predicate::Operator op, const std::vector<size_t>& indexes, T... values)
{
auto table = [&] {
TableRef& tbl = query.get_table();
for (size_t col : indexes) {
tbl->link(col); // mutates m_link_chain on table
}
return tbl.get();
};
auto type = prop->type;
switch (type) {
case PropertyTypeBool:
add_bool_constraint_to_query(query, op, value_of_type_for_query<bool>(table, values)...);
break;
case PropertyTypeDate:
add_numeric_constraint_to_query(query, type, op, value_of_type_for_query<DateTime>(table, values)...);
break;
case PropertyTypeDouble:
add_numeric_constraint_to_query(query, type, op, value_of_type_for_query<Double>(table, values)...);
break;
case PropertyTypeFloat:
add_numeric_constraint_to_query(query, type, op, value_of_type_for_query<Float>(table, values)...);
break;
case PropertyTypeInt:
add_numeric_constraint_to_query(query, type, op, value_of_type_for_query<Int>(table, values)...);
break;
case PropertyTypeString:
case PropertyTypeData:
add_string_constraint_to_query(query, op, value_of_type_for_query<String>(table, values)...);
break;
default: {
throw std::runtime_error((std::string)"Object type " + string_for_property_type(type) + " not supported");
}
}
}
void add_comparison_to_query(Query &query, Predicate &pred, Schema &schema, ObjectSchema &object_schema)
{
std::vector<size_t> indexes;
auto t0 = pred.sub_expressions[0].type, t1 = pred.sub_expressions[1].type;
if (t0 == Expression::Type::KeyPath && t1 != Expression::Type::KeyPath) {
Property *prop = get_property_from_key_path(schema, object_schema, pred.sub_expressions[0].s, indexes);
do_add_comparison_to_query(query, schema, object_schema, prop, pred.op, indexes, prop->table_column, pred.sub_expressions[1].s);
}
else if (t0 != Expression::Type::KeyPath && t1 == Expression::Type::KeyPath) {
Property *prop = get_property_from_key_path(schema, object_schema, pred.sub_expressions[1].s, indexes);
do_add_comparison_to_query(query, schema, object_schema, prop, pred.op, indexes, pred.sub_expressions[0].s, prop->table_column);
}
else {
throw std::runtime_error("Predicate expressions must compare a keypath and another keypath or a constant value");
}
}
void update_query_with_predicate(Query &query, Predicate &pred, Schema &schema, ObjectSchema &object_schema)
{
if (pred.negate) {
query.Not();
}
switch (pred.type) {
case Predicate::Type::And:
query.group();
for (auto &sub : pred.sub_predicates) {
update_query_with_predicate(query, sub, schema, object_schema);
}
if (!pred.sub_predicates.size()) {
query.and_query(new TrueExpression);
}
query.end_group();
break;
case Predicate::Type::Or:
query.group();
for (auto &sub : pred.sub_predicates) {
query.Or();
update_query_with_predicate(query, sub, schema, object_schema);
}
if (!pred.sub_predicates.size()) {
query.and_query(new FalseExpression);
}
query.end_group();
break;
case Predicate::Type::Comparison: {
add_comparison_to_query(query, pred, schema, object_schema);
break;
}
case Predicate::Type::True:
query.and_query(new TrueExpression);
break;
case Predicate::Type::False:
query.and_query(new FalseExpression);
break;
default:
throw std::runtime_error("Invalid predicate type");
break;
}
}
void apply_predicate(Query &query, Predicate &predicate, Schema &schema, std::string objectType) {
update_query_with_predicate(query, predicate, schema, *schema.find(objectType));
// Test the constructed query in core
std::string validateMessage = query.validate();
precondition(validateMessage.empty(), validateMessage.c_str());
}
2015-11-09 19:29:57 +00:00
}}