nimbus-eth2/research/fork_choice_rule/ethresearch/distributions.nim

77 lines
2.5 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# beacon_chain
# Copyright (c) 2018 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# A port of https://github.com/ethereum/research/blob/master/clock_disparity/ghost_node.py
# Specs: https://ethresear.ch/t/beacon-chain-casper-ffg-rpj-mini-spec/2760
# Part of Casper+Sharding chain v2.1: https://notes.ethereum.org/SCIg8AH5SA-O4C1G1LYZHQ#
# Note that implementation is not updated to the latest v2.1 yet
import math, random
proc normal_distribution*(mean = 0, std = 1): int =
## Return an integer sampled from a normal distribution (gaussian)
## ⚠ This is not thread-safe
# Implementation via the Box-Muller method
# See https://en.wikipedia.org/wiki/BoxMuller_transform
let
mean = mean.float
std = std.float
var
z1 {.global.}: float
generate {.global.}: bool
generate = not generate
if not generate:
return int(z1 * std + mean)
let
u1 = rand(1.0)
u2 = rand(1.0)
R = sqrt(-2.0 * ln(u1))
z0 = R * cos(2 * PI * u2)
z1 = R * sin(2 * PI * u2)
return int(z0 * std + mean)
when isMainModule:
import sequtils, stats, strformat
func absolute_error(y_true, y: float): float =
## Absolute error: |y_true - y|
abs(y_true - y)
func relative_error(y_true, y: float): float =
## Relative error: |y_true - y|/|y_true|
abs(y_true - y)/abs(y_true)
let
mu = 1000
sigma = 12
a = newSeqWith(10000000, normal_distribution(mean = mu, std = sigma))
var statistics: RunningStat
for val in a:
statistics.push val
# Note: we use the sample standard deviation, not population
# See Bessel's correction and standard deviation estimation.
proc report(stat: string, value, expected: float) =
echo &"{stat:<20} {value:>9.4f} | Expected: {expected:>9.4f}"
echo &"Statistics on {a.len} samples"
report "Mean: ", statistics.mean, mu.float
report "Standard deviation: ", statistics.standardDeviationS, sigma.float
# Absolute error
doAssert absolute_error(mu.float, statistics.mean) < 0.6
doAssert absolute_error(sigma.float, statistics.standardDeviationS) < 0.01
# Relative error
doAssert relative_error(mu.float, statistics.mean) < 0.01
doAssert relative_error(sigma.float, statistics.standardDeviationS) < 0.01