# beacon_chain # Copyright (c) 2018 Status Research & Development GmbH # Licensed and distributed under either of # * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # A port of https://github.com/ethereum/research/blob/master/clock_disparity/ghost_node.py # Specs: https://ethresear.ch/t/beacon-chain-casper-ffg-rpj-mini-spec/2760 # Part of Casper+Sharding chain v2.1: https://notes.ethereum.org/SCIg8AH5SA-O4C1G1LYZHQ# # Note that implementation is not updated to the latest v2.1 yet import math, random proc normal_distribution*(mean = 0, std = 1): int = ## Return an integer sampled from a normal distribution (gaussian) ## ⚠ This is not thread-safe # Implementation via the Box-Muller method # See https://en.wikipedia.org/wiki/Box–Muller_transform let mean = mean.float std = std.float var z1 {.global.}: float generate {.global.}: bool generate = not generate if not generate: return int(z1 * std + mean) let u1 = rand(1.0) u2 = rand(1.0) R = sqrt(-2.0 * ln(u1)) z0 = R * cos(2 * PI * u2) z1 = R * sin(2 * PI * u2) return int(z0 * std + mean) when isMainModule: import sequtils, stats, strformat func absolute_error(y_true, y: float): float = ## Absolute error: |y_true - y| abs(y_true - y) func relative_error(y_true, y: float): float = ## Relative error: |y_true - y|/|y_true| abs(y_true - y)/abs(y_true) let mu = 1000 sigma = 12 a = newSeqWith(10000000, normal_distribution(mean = mu, std = sigma)) var statistics: RunningStat for val in a: statistics.push val # Note: we use the sample standard deviation, not population # See Bessel's correction and standard deviation estimation. proc report(stat: string, value, expected: float) = echo &"{stat:<20} {value:>9.4f} | Expected: {expected:>9.4f}" echo &"Statistics on {a.len} samples" report "Mean: ", statistics.mean, mu.float report "Standard deviation: ", statistics.standardDeviationS, sigma.float # Absolute error doAssert absolute_error(mu.float, statistics.mean) < 0.6 doAssert absolute_error(sigma.float, statistics.standardDeviationS) < 0.01 # Relative error doAssert relative_error(mu.float, statistics.mean) < 0.01 doAssert relative_error(sigma.float, statistics.standardDeviationS) < 0.01