mirror of
https://github.com/status-im/nimbus-eth2.git
synced 2025-01-24 13:33:14 +00:00
c7abc97545
* harden and speed up block sync The `GetBlockBy*` server implementation currently reads SSZ bytes from database, deserializes them into a Nim object then serializes them right back to SSZ - here, we eliminate the deser/ser steps and send the bytes straight to the network. Unfortunately, the snappy recoding must still be done because of differences in framing. Also, the quota system makes one giant request for quota right before sending all blocks - this means that a 1024 block request will be "paused" for a long time, then all blocks will be sent at once causing a spike in database reads which potentially will see the reading client time out before any block is sent. Finally, on the reading side we make several copies of blocks as they travel through various queues - this was not noticeable before but becomes a problem in two cases: bellatrix blocks are up to 10mb (instead of .. 30-40kb) and when backfilling, we process a lot more of them a lot faster. * fix status comparisons for nodes syncing from genesis (#3327 was a bit too hard) * don't hit database at all for post-altair slots in GetBlock v1 requests
820 lines
30 KiB
Nim
820 lines
30 KiB
Nim
# beacon_chain
|
||
# Copyright (c) 2018-2022 Status Research & Development GmbH
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
{.push raises: [Defect].}
|
||
|
||
import std/[options, heapqueue, tables, strutils, sequtils, math, algorithm]
|
||
import stew/results, chronos, chronicles
|
||
import
|
||
../spec/datatypes/[base, phase0, altair],
|
||
../spec/eth2_apis/rpc_types,
|
||
../spec/[helpers, forks],
|
||
../networking/[peer_pool, eth2_network],
|
||
../gossip_processing/block_processor,
|
||
../consensus_object_pools/block_pools_types
|
||
|
||
export base, phase0, altair, merge, chronos, chronicles, results,
|
||
block_pools_types, helpers
|
||
|
||
logScope:
|
||
topics = "syncqueue"
|
||
|
||
type
|
||
GetSlotCallback* = proc(): Slot {.gcsafe, raises: [Defect].}
|
||
ProcessingCallback* = proc() {.gcsafe, raises: [Defect].}
|
||
BlockVerifier* =
|
||
proc(signedBlock: ForkedSignedBeaconBlock):
|
||
Future[Result[void, BlockError]] {.gcsafe, raises: [Defect].}
|
||
|
||
SyncQueueKind* {.pure.} = enum
|
||
Forward, Backward
|
||
|
||
SyncRequest*[T] = object
|
||
kind: SyncQueueKind
|
||
index*: uint64
|
||
slot*: Slot
|
||
count*: uint64
|
||
step*: uint64
|
||
item*: T
|
||
|
||
SyncResult*[T] = object
|
||
request*: SyncRequest[T]
|
||
data*: seq[ref ForkedSignedBeaconBlock]
|
||
|
||
SyncWaiter* = ref object
|
||
future: Future[void]
|
||
reset: bool
|
||
|
||
RewindPoint = object
|
||
failSlot: Slot
|
||
epochCount: uint64
|
||
|
||
SyncQueue*[T] = ref object
|
||
kind*: SyncQueueKind
|
||
inpSlot*: Slot
|
||
outSlot*: Slot
|
||
startSlot*: Slot
|
||
finalSlot*: Slot
|
||
chunkSize*: uint64
|
||
queueSize*: int
|
||
counter*: uint64
|
||
pending*: Table[uint64, SyncRequest[T]]
|
||
waiters: seq[SyncWaiter]
|
||
getSafeSlot*: GetSlotCallback
|
||
debtsQueue: HeapQueue[SyncRequest[T]]
|
||
debtsCount: uint64
|
||
readyQueue: HeapQueue[SyncResult[T]]
|
||
rewind: Option[RewindPoint]
|
||
blockVerifier: BlockVerifier
|
||
|
||
SyncManagerError* = object of CatchableError
|
||
BeaconBlocksRes* = NetRes[seq[ref ForkedSignedBeaconBlock]]
|
||
|
||
chronicles.formatIt SyncQueueKind: $it
|
||
|
||
proc getShortMap*[T](req: SyncRequest[T],
|
||
data: openArray[ref ForkedSignedBeaconBlock]): string =
|
||
## Returns all slot numbers in ``data`` as placement map.
|
||
var res = newStringOfCap(req.count)
|
||
var slider = req.slot
|
||
var last = 0
|
||
for i in 0 ..< req.count:
|
||
if last < len(data):
|
||
for k in last ..< len(data):
|
||
if slider == data[k][].slot:
|
||
res.add('x')
|
||
last = k + 1
|
||
break
|
||
elif slider < data[k][].slot:
|
||
res.add('.')
|
||
break
|
||
else:
|
||
res.add('.')
|
||
slider = slider + req.step
|
||
res
|
||
|
||
proc contains*[T](req: SyncRequest[T], slot: Slot): bool {.inline.} =
|
||
slot >= req.slot and slot < req.slot + req.count * req.step and
|
||
((slot - req.slot) mod req.step == 0)
|
||
|
||
proc cmp*[T](a, b: SyncRequest[T]): int =
|
||
cmp(uint64(a.slot), uint64(b.slot))
|
||
|
||
proc checkResponse*[T](req: SyncRequest[T],
|
||
data: openArray[ref ForkedSignedBeaconBlock]): bool =
|
||
if len(data) == 0:
|
||
# Impossible to verify empty response.
|
||
return true
|
||
|
||
if uint64(len(data)) > req.count:
|
||
# Number of blocks in response should be less or equal to number of
|
||
# requested blocks.
|
||
return false
|
||
|
||
var slot = req.slot
|
||
var rindex = 0'u64
|
||
var dindex = 0
|
||
|
||
while (rindex < req.count) and (dindex < len(data)):
|
||
if slot < data[dindex][].slot:
|
||
discard
|
||
elif slot == data[dindex][].slot:
|
||
inc(dindex)
|
||
else:
|
||
return false
|
||
slot = slot + req.step
|
||
rindex = rindex + 1'u64
|
||
|
||
if dindex == len(data):
|
||
return true
|
||
else:
|
||
return false
|
||
|
||
proc getFullMap*[T](req: SyncRequest[T],
|
||
data: openArray[ForkedSignedBeaconBlock]): string =
|
||
# Returns all slot numbers in ``data`` as comma-delimeted string.
|
||
mapIt(data, $it.message.slot).join(", ")
|
||
|
||
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, start: Slot,
|
||
finish: Slot, t2: typedesc[T]): SyncRequest[T] =
|
||
let count = finish - start + 1'u64
|
||
SyncRequest[T](kind: kind, slot: start, count: count, step: 1'u64)
|
||
|
||
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, slot: Slot,
|
||
count: uint64, item: T): SyncRequest[T] =
|
||
SyncRequest[T](kind: kind, slot: slot, count: count, item: item, step: 1'u64)
|
||
|
||
proc init[T](t1: typedesc[SyncRequest], kind: SyncQueueKind, start: Slot,
|
||
finish: Slot, item: T): SyncRequest[T] =
|
||
let count = finish - start + 1'u64
|
||
SyncRequest[T](kind: kind, slot: start, count: count, step: 1'u64, item: item)
|
||
|
||
proc empty*[T](t: typedesc[SyncRequest], kind: SyncQueueKind,
|
||
t2: typedesc[T]): SyncRequest[T] {.inline.} =
|
||
SyncRequest[T](kind: kind, step: 0'u64, count: 0'u64)
|
||
|
||
proc setItem*[T](sr: var SyncRequest[T], item: T) =
|
||
sr.item = item
|
||
|
||
proc isEmpty*[T](sr: SyncRequest[T]): bool {.inline.} =
|
||
(sr.step == 0'u64) and (sr.count == 0'u64)
|
||
|
||
proc init*[T](t1: typedesc[SyncQueue], t2: typedesc[T],
|
||
queueKind: SyncQueueKind,
|
||
start, final: Slot, chunkSize: uint64,
|
||
getSafeSlotCb: GetSlotCallback,
|
||
blockVerifier: BlockVerifier,
|
||
syncQueueSize: int = -1): SyncQueue[T] =
|
||
## Create new synchronization queue with parameters
|
||
##
|
||
## ``start`` and ``last`` are starting and finishing Slots.
|
||
##
|
||
## ``chunkSize`` maximum number of slots in one request.
|
||
##
|
||
## ``syncQueueSize`` maximum queue size for incoming data.
|
||
## If ``syncQueueSize > 0`` queue will help to keep backpressure under
|
||
## control. If ``syncQueueSize <= 0`` then queue size is unlimited (default).
|
||
|
||
# SyncQueue is the core of sync manager, this data structure distributes
|
||
# requests to peers and manages responses from peers.
|
||
#
|
||
# Because SyncQueue is async data structure it manages backpressure and
|
||
# order of incoming responses and it also resolves "joker's" problem.
|
||
#
|
||
# Joker's problem
|
||
#
|
||
# According to current Ethereum2 network specification
|
||
# > Clients MUST respond with at least one block, if they have it and it
|
||
# > exists in the range. Clients MAY limit the number of blocks in the
|
||
# > response.
|
||
#
|
||
# Such rule can lead to very uncertain responses, for example let slots from
|
||
# 10 to 12 will be not empty. Client which follows specification can answer
|
||
# with any response from this list (X - block, `-` empty space):
|
||
#
|
||
# 1. X X X
|
||
# 2. - - X
|
||
# 3. - X -
|
||
# 4. - X X
|
||
# 5. X - -
|
||
# 6. X - X
|
||
# 7. X X -
|
||
#
|
||
# If peer answers with `1` everything will be fine and `block_pool` will be
|
||
# able to process all 3 blocks. In case of `2`, `3`, `4`, `6` - `block_pool`
|
||
# will fail immediately with chunk and report "parent is missing" error.
|
||
# But in case of `5` and `7` blocks will be processed by `block_pool` without
|
||
# any problems, however it will start producing problems right from this
|
||
# uncertain last slot. SyncQueue will start producing requests for next
|
||
# blocks, but all the responses from this point will fail with "parent is
|
||
# missing" error. Lets call such peers "jokers", because they are joking
|
||
# with responses.
|
||
#
|
||
# To fix "joker" problem we going to perform rollback to the latest finalized
|
||
# epoch's first slot.
|
||
doAssert(chunkSize > 0'u64, "Chunk size should not be zero")
|
||
SyncQueue[T](
|
||
kind: queueKind,
|
||
startSlot: start,
|
||
finalSlot: final,
|
||
chunkSize: chunkSize,
|
||
queueSize: syncQueueSize,
|
||
getSafeSlot: getSafeSlotCb,
|
||
waiters: newSeq[SyncWaiter](),
|
||
counter: 1'u64,
|
||
pending: initTable[uint64, SyncRequest[T]](),
|
||
debtsQueue: initHeapQueue[SyncRequest[T]](),
|
||
inpSlot: start,
|
||
outSlot: start,
|
||
blockVerifier: blockVerifier
|
||
)
|
||
|
||
proc `<`*[T](a, b: SyncRequest[T]): bool =
|
||
doAssert(a.kind == b.kind)
|
||
case a.kind
|
||
of SyncQueueKind.Forward:
|
||
a.slot < b.slot
|
||
of SyncQueueKind.Backward:
|
||
a.slot > b.slot
|
||
|
||
proc `<`*[T](a, b: SyncResult[T]): bool =
|
||
doAssert(a.request.kind == b.request.kind)
|
||
case a.request.kind
|
||
of SyncQueueKind.Forward:
|
||
a.request.slot < b.request.slot
|
||
of SyncQueueKind.Backward:
|
||
a.request.slot > b.request.slot
|
||
|
||
proc `==`*[T](a, b: SyncRequest[T]): bool =
|
||
(a.kind == b.kind) and (a.slot == b.slot) and (a.count == b.count) and
|
||
(a.step == b.step)
|
||
|
||
proc lastSlot*[T](req: SyncRequest[T]): Slot =
|
||
## Returns last slot for request ``req``.
|
||
req.slot + req.count - 1'u64
|
||
|
||
proc makePending*[T](sq: SyncQueue[T], req: var SyncRequest[T]) =
|
||
req.index = sq.counter
|
||
sq.counter = sq.counter + 1'u64
|
||
sq.pending[req.index] = req
|
||
|
||
proc updateLastSlot*[T](sq: SyncQueue[T], last: Slot) {.inline.} =
|
||
## Update last slot stored in queue ``sq`` with value ``last``.
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
doAssert(sq.finalSlot <= last,
|
||
"Last slot could not be lower then stored one " &
|
||
$sq.finalSlot & " <= " & $last)
|
||
sq.finalSlot = last
|
||
of SyncQueueKind.Backward:
|
||
doAssert(sq.finalSlot >= last,
|
||
"Last slot could not be higher then stored one " &
|
||
$sq.finalSlot & " >= " & $last)
|
||
sq.finalSlot = last
|
||
|
||
proc wakeupWaiters[T](sq: SyncQueue[T], reset = false) =
|
||
## Wakeup one or all blocked waiters.
|
||
for item in sq.waiters:
|
||
if reset:
|
||
item.reset = true
|
||
|
||
if not(item.future.finished()):
|
||
item.future.complete()
|
||
|
||
proc waitForChanges[T](sq: SyncQueue[T]): Future[bool] {.async.} =
|
||
## Create new waiter and wait for completion from `wakeupWaiters()`.
|
||
var waitfut = newFuture[void]("SyncQueue.waitForChanges")
|
||
let waititem = SyncWaiter(future: waitfut)
|
||
sq.waiters.add(waititem)
|
||
try:
|
||
await waitfut
|
||
return waititem.reset
|
||
finally:
|
||
sq.waiters.delete(sq.waiters.find(waititem))
|
||
|
||
proc wakeupAndWaitWaiters[T](sq: SyncQueue[T]) {.async.} =
|
||
## This procedure will perform wakeupWaiters(false) and blocks until last
|
||
## waiter will be awakened.
|
||
var waitChanges = sq.waitForChanges()
|
||
sq.wakeupWaiters(true)
|
||
discard await waitChanges
|
||
|
||
proc clearAndWakeup*[T](sq: SyncQueue[T]) =
|
||
sq.pending.clear()
|
||
sq.wakeupWaiters(true)
|
||
|
||
proc resetWait*[T](sq: SyncQueue[T], toSlot: Option[Slot]) {.async.} =
|
||
## Perform reset of all the blocked waiters in SyncQueue.
|
||
##
|
||
## We adding one more waiter to the waiters sequence and
|
||
## call wakeupWaiters(true). Because our waiter is last in sequence of
|
||
## waiters it will be resumed only after all waiters will be awakened and
|
||
## finished.
|
||
|
||
# We are clearing pending list, so that all requests that are still running
|
||
# around (still downloading, but not yet pushed to the SyncQueue) will be
|
||
# expired. Its important to perform this call first (before await), otherwise
|
||
# you can introduce race problem.
|
||
sq.pending.clear()
|
||
|
||
# We calculating minimal slot number to which we will be able to reset,
|
||
# without missing any blocks. There 3 sources:
|
||
# 1. Debts queue.
|
||
# 2. Processing queue (`inpSlot`, `outSlot`).
|
||
# 3. Requested slot `toSlot`.
|
||
#
|
||
# Queue's `outSlot` is the lowest slot we added to `block_pool`, but
|
||
# `toSlot` slot can be less then `outSlot`. `debtsQueue` holds only not
|
||
# added slot requests, so it can't be bigger then `outSlot` value.
|
||
let minSlot =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if toSlot.isSome():
|
||
min(toSlot.get(), sq.outSlot)
|
||
else:
|
||
sq.outSlot
|
||
of SyncQueueKind.Backward:
|
||
if toSlot.isSome():
|
||
toSlot.get()
|
||
else:
|
||
sq.outSlot
|
||
sq.debtsQueue.clear()
|
||
sq.debtsCount = 0
|
||
sq.readyQueue.clear()
|
||
sq.inpSlot = minSlot
|
||
sq.outSlot = minSlot
|
||
# We are going to wakeup all the waiters and wait for last one.
|
||
await sq.wakeupAndWaitWaiters()
|
||
|
||
proc isEmpty*[T](sr: SyncResult[T]): bool {.inline.} =
|
||
## Returns ``true`` if response chain of blocks is empty (has only empty
|
||
## slots).
|
||
len(sr.data) == 0
|
||
|
||
proc hasEndGap*[T](sr: SyncResult[T]): bool {.inline.} =
|
||
## Returns ``true`` if response chain of blocks has gap at the end.
|
||
let lastslot = sr.request.slot + sr.request.count - 1'u64
|
||
if len(sr.data) == 0:
|
||
return true
|
||
if sr.data[^1][].slot != lastslot:
|
||
return true
|
||
return false
|
||
|
||
proc getLastNonEmptySlot*[T](sr: SyncResult[T]): Slot {.inline.} =
|
||
## Returns last non-empty slot from result ``sr``. If response has only
|
||
## empty slots, original request slot will be returned.
|
||
if len(sr.data) == 0:
|
||
# If response has only empty slots we going to use original request slot
|
||
sr.request.slot
|
||
else:
|
||
sr.data[^1][].slot
|
||
|
||
proc toDebtsQueue[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
|
||
sq.debtsQueue.push(sr)
|
||
sq.debtsCount = sq.debtsCount + sr.count
|
||
|
||
proc getRewindPoint*[T](sq: SyncQueue[T], failSlot: Slot,
|
||
safeSlot: Slot): Slot =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
# Calculate the latest finalized epoch.
|
||
let finalizedEpoch = epoch(safeSlot)
|
||
|
||
# Calculate failure epoch.
|
||
let failEpoch = epoch(failSlot)
|
||
|
||
# Calculate exponential rewind point in number of epochs.
|
||
let epochCount =
|
||
if sq.rewind.isSome():
|
||
let rewind = sq.rewind.get()
|
||
if failSlot == rewind.failSlot:
|
||
# `MissingParent` happened at same slot so we increase rewind point by
|
||
# factor of 2.
|
||
if failEpoch > finalizedEpoch:
|
||
let rewindPoint = rewind.epochCount shl 1
|
||
if rewindPoint < rewind.epochCount:
|
||
# If exponential rewind point produces `uint64` overflow we will
|
||
# make rewind to latest finalized epoch.
|
||
failEpoch - finalizedEpoch
|
||
else:
|
||
if (failEpoch < rewindPoint) or
|
||
(failEpoch - rewindPoint < finalizedEpoch):
|
||
# If exponential rewind point points to position which is far
|
||
# behind latest finalized epoch.
|
||
failEpoch - finalizedEpoch
|
||
else:
|
||
rewindPoint
|
||
else:
|
||
warn "Trying to rewind over the last finalized epoch",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
rewind_epoch_count = rewind.epochCount,
|
||
finalized_epoch = finalizedEpoch, direction = sq.kind,
|
||
topics = "syncman"
|
||
0'u64
|
||
else:
|
||
# `MissingParent` happened at different slot so we going to rewind for
|
||
# 1 epoch only.
|
||
if (failEpoch < 1'u64) or (failEpoch - 1'u64 < finalizedEpoch):
|
||
warn "Сould not rewind further than the last finalized epoch",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
rewind_epoch_count = rewind.epochCount,
|
||
finalized_epoch = finalizedEpoch, direction = sq.kind,
|
||
topics = "syncman"
|
||
0'u64
|
||
else:
|
||
1'u64
|
||
else:
|
||
# `MissingParent` happened first time.
|
||
if (failEpoch < 1'u64) or (failEpoch - 1'u64 < finalizedEpoch):
|
||
warn "Сould not rewind further than the last finalized epoch",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
finalized_epoch = finalizedEpoch, direction = sq.kind,
|
||
topics = "syncman"
|
||
0'u64
|
||
else:
|
||
1'u64
|
||
|
||
if epochCount == 0'u64:
|
||
warn "Unable to continue syncing, please restart the node",
|
||
finalized_slot = safeSlot, fail_slot = failSlot,
|
||
finalized_epoch = finalizedEpoch, fail_epoch = failEpoch,
|
||
finalized_epoch = finalizedEpoch, direction = sq.kind,
|
||
topics = "syncman"
|
||
# Calculate the rewind epoch, which will be equal to last rewind point or
|
||
# finalizedEpoch
|
||
let rewindEpoch =
|
||
if sq.rewind.isNone():
|
||
finalizedEpoch
|
||
else:
|
||
epoch(sq.rewind.get().failSlot) - sq.rewind.get().epochCount
|
||
rewindEpoch.start_slot()
|
||
else:
|
||
# Calculate the rewind epoch, which should not be less than the latest
|
||
# finalized epoch.
|
||
let rewindEpoch = failEpoch - epochCount
|
||
# Update and save new rewind point in SyncQueue.
|
||
sq.rewind = some(RewindPoint(failSlot: failSlot, epochCount: epochCount))
|
||
rewindEpoch.start_slot()
|
||
of SyncQueueKind.Backward:
|
||
# While we perform backward sync, the only possible slot we could rewind is
|
||
# latest stored block.
|
||
if failSlot == safeSlot:
|
||
warn "Unable to continue syncing, please restart the node",
|
||
safe_slot = safeSlot, fail_slot = failSlot, direction = sq.kind,
|
||
topics = "syncman"
|
||
safeSlot
|
||
|
||
iterator blocks*[T](sq: SyncQueue[T],
|
||
sr: SyncResult[T]): ref ForkedSignedBeaconBlock =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
for i in countup(0, len(sr.data) - 1):
|
||
yield sr.data[i]
|
||
of SyncQueueKind.Backward:
|
||
for i in countdown(len(sr.data) - 1, 0):
|
||
yield sr.data[i]
|
||
|
||
proc advanceOutput*[T](sq: SyncQueue[T], number: uint64) =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.outSlot = sq.outSlot + number
|
||
of SyncQueueKind.Backward:
|
||
sq.outSlot = sq.outSlot - number
|
||
|
||
proc advanceInput[T](sq: SyncQueue[T], number: uint64) =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.inpSlot = sq.inpSlot + number
|
||
of SyncQueueKind.Backward:
|
||
sq.inpSlot = sq.inpSlot - number
|
||
|
||
proc notInRange[T](sq: SyncQueue[T], sr: SyncRequest[T]): bool =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
(sq.queueSize > 0) and (sr.slot != sq.outSlot)
|
||
of SyncQueueKind.Backward:
|
||
(sq.queueSize > 0) and (sr.slot + sr.count - 1'u64 != sq.outSlot)
|
||
|
||
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T],
|
||
data: seq[ref ForkedSignedBeaconBlock],
|
||
processingCb: ProcessingCallback = nil) {.async.} =
|
||
## Push successful result to queue ``sq``.
|
||
mixin updateScore
|
||
|
||
if sr.index notin sq.pending:
|
||
# If request `sr` not in our pending list, it only means that
|
||
# SyncQueue.resetWait() happens and all pending requests are expired, so
|
||
# we swallow `old` requests, and in such way sync-workers are able to get
|
||
# proper new requests from SyncQueue.
|
||
return
|
||
|
||
sq.pending.del(sr.index)
|
||
|
||
# This is backpressure handling algorithm, this algorithm is blocking
|
||
# all pending `push` requests if `request.slot` not in range.
|
||
while true:
|
||
if sq.notInRange(sr):
|
||
let reset = await sq.waitForChanges()
|
||
if reset:
|
||
# SyncQueue reset happens. We are exiting to wake up sync-worker.
|
||
return
|
||
else:
|
||
let syncres = SyncResult[T](request: sr, data: data)
|
||
sq.readyQueue.push(syncres)
|
||
break
|
||
|
||
while len(sq.readyQueue) > 0:
|
||
let reqres =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
let minSlot = sq.readyQueue[0].request.slot
|
||
if sq.outSlot != minSlot:
|
||
none[SyncResult[T]]()
|
||
else:
|
||
some(sq.readyQueue.pop())
|
||
of SyncQueueKind.Backward:
|
||
let maxSlot = sq.readyQueue[0].request.slot +
|
||
(sq.readyQueue[0].request.count - 1'u64)
|
||
if sq.outSlot != maxSlot:
|
||
none[SyncResult[T]]()
|
||
else:
|
||
some(sq.readyQueue.pop())
|
||
|
||
let item =
|
||
if reqres.isSome():
|
||
reqres.get()
|
||
else:
|
||
let rewindSlot = sq.getRewindPoint(sq.outSlot, sq.getSafeSlot())
|
||
warn "Got incorrect sync result in queue, rewind happens",
|
||
request_slot = sq.readyQueue[0].request.slot,
|
||
request_count = sq.readyQueue[0].request.count,
|
||
request_step = sq.readyQueue[0].request.step,
|
||
blocks_map = getShortMap(sq.readyQueue[0].request,
|
||
sq.readyQueue[0].data),
|
||
blocks_count = len(sq.readyQueue[0].data),
|
||
output_slot = sq.outSlot, input_slot = sq.inpSlot,
|
||
peer = sq.readyQueue[0].request.item, rewind_to_slot = rewindSlot,
|
||
direction = sq.readyQueue[0].request.kind, topics = "syncman"
|
||
await sq.resetWait(some(rewindSlot))
|
||
break
|
||
|
||
if processingCb != nil:
|
||
processingCb()
|
||
|
||
# Validating received blocks one by one
|
||
var
|
||
hasOkBlock = false
|
||
hasInvalidBlock = false
|
||
unviableBlock: Option[(Eth2Digest, Slot)]
|
||
missingParentSlot: Option[Slot]
|
||
|
||
# compiler segfault if this is moved into the for loop, at time of writing
|
||
res: Result[void, BlockError]
|
||
|
||
for blk in sq.blocks(item):
|
||
res = await sq.blockVerifier(blk[])
|
||
if res.isOk():
|
||
hasOkBlock = true
|
||
else:
|
||
case res.error()
|
||
of BlockError.MissingParent:
|
||
missingParentSlot = some(blk[].slot)
|
||
break
|
||
of BlockError.Duplicate:
|
||
# Keep going, happens naturally
|
||
discard
|
||
of BlockError.UnviableFork:
|
||
# Keep going so as to register other unviable blocks with the
|
||
# quarantine
|
||
if unviableBlock.isNone:
|
||
# Remember the first unviable block, so we can log it
|
||
unviableBlock = some((blk[].root, blk[].slot))
|
||
|
||
of BlockError.Invalid:
|
||
hasInvalidBlock = true
|
||
|
||
let req = item.request
|
||
warn "Received invalid sequence of blocks", peer = req.item,
|
||
request_slot = req.slot, request_count = req.count,
|
||
request_step = req.step, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
direction = req.kind, topics = "syncman"
|
||
req.item.updateScore(PeerScoreBadBlocks)
|
||
break
|
||
|
||
# When errors happen while processing blocks, we retry the same request
|
||
# with, hopefully, a different peer
|
||
let retryRequest =
|
||
hasInvalidBlock or unviableBlock.isSome() or missingParentSlot.isSome()
|
||
if not retryRequest:
|
||
sq.advanceOutput(item.request.count)
|
||
|
||
if hasOkBlock:
|
||
# If there no error and response was not empty we should reward peer
|
||
# with some bonus score - not for duplicate blocks though.
|
||
item.request.item.updateScore(PeerScoreGoodBlocks)
|
||
|
||
sq.wakeupWaiters()
|
||
else:
|
||
debug "Block pool rejected peer's response", peer = item.request.item,
|
||
request_slot = item.request.slot,
|
||
request_count = item.request.count,
|
||
request_step = item.request.step,
|
||
blocks_map = getShortMap(item.request, item.data),
|
||
blocks_count = len(item.data),
|
||
ok = hasOkBlock,
|
||
unviable = unviableBlock.isSome(),
|
||
missing_parent = missingParentSlot.isSome(),
|
||
direction = item.request.kind, topics = "syncman"
|
||
|
||
# We need to move failed response to the debts queue.
|
||
sq.toDebtsQueue(item.request)
|
||
|
||
if unviableBlock.isSome:
|
||
let req = item.request
|
||
notice "Received blocks from an unviable fork",
|
||
blockRoot = unviableBlock.get()[0],
|
||
blockSlot = unviableBlock.get()[1], peer = req.item,
|
||
request_slot = req.slot, request_count = req.count,
|
||
request_step = req.step, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
direction = req.kind, topics = "syncman"
|
||
req.item.updateScore(PeerScoreUnviableFork)
|
||
|
||
if missingParentSlot.isSome:
|
||
var
|
||
resetSlot: Option[Slot]
|
||
failSlot = missingParentSlot.get()
|
||
|
||
# If we got `BlockError.MissingParent` it means that peer returns chain
|
||
# of blocks with holes or `block_pool` is in incomplete state. We going
|
||
# to rewind to the first slot at latest finalized epoch.
|
||
let
|
||
req = item.request
|
||
safeSlot = sq.getSafeSlot()
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if safeSlot < req.slot:
|
||
let rewindSlot = sq.getRewindPoint(failSlot, safeSlot)
|
||
warn "Unexpected missing parent, rewind happens",
|
||
peer = req.item, rewind_to_slot = rewindSlot,
|
||
rewind_epoch_count = sq.rewind.get().epochCount,
|
||
rewind_fail_slot = failSlot,
|
||
finalized_slot = safeSlot,
|
||
request_slot = req.slot, request_count = req.count,
|
||
request_step = req.step, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
direction = req.kind, topics = "syncman"
|
||
resetSlot = some(rewindSlot)
|
||
req.item.updateScore(PeerScoreMissingBlocks)
|
||
else:
|
||
error "Unexpected missing parent at finalized epoch slot",
|
||
peer = req.item, to_slot = safeSlot,
|
||
request_slot = req.slot, request_count = req.count,
|
||
request_step = req.step, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
direction = req.kind, topics = "syncman"
|
||
req.item.updateScore(PeerScoreBadBlocks)
|
||
of SyncQueueKind.Backward:
|
||
if safeSlot > req.slot:
|
||
let rewindSlot = sq.getRewindPoint(failSlot, safeSlot)
|
||
# It's quite common peers give us fewer blocks than we ask for
|
||
info "Gap in block range response, rewinding",
|
||
peer = req.item, rewind_to_slot = rewindSlot,
|
||
rewind_fail_slot = failSlot,
|
||
finalized_slot = safeSlot,
|
||
request_slot = req.slot, request_count = req.count,
|
||
request_step = req.step, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
direction = req.kind, topics = "syncman"
|
||
resetSlot = some(rewindSlot)
|
||
req.item.updateScore(PeerScoreMissingBlocks)
|
||
else:
|
||
error "Unexpected missing parent at safe slot",
|
||
peer = req.item, to_slot = safeSlot,
|
||
request_slot = req.slot, request_count = req.count,
|
||
request_step = req.step, blocks_count = len(item.data),
|
||
blocks_map = getShortMap(req, item.data),
|
||
direction = req.kind, topics = "syncman"
|
||
req.item.updateScore(PeerScoreBadBlocks)
|
||
|
||
if resetSlot.isSome():
|
||
await sq.resetWait(resetSlot)
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
debug "Rewind to slot was happened", reset_slot = reset_slot.get(),
|
||
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
|
||
rewind_epoch_count = sq.rewind.get().epochCount,
|
||
rewind_fail_slot = sq.rewind.get().failSlot,
|
||
reset_slot = resetSlot, direction = sq.kind, topics = "syncman"
|
||
of SyncQueueKind.Backward:
|
||
debug "Rewind to slot was happened", reset_slot = reset_slot.get(),
|
||
queue_input_slot = sq.inpSlot, queue_output_slot = sq.outSlot,
|
||
reset_slot = resetSlot, direction = sq.kind, topics = "syncman"
|
||
|
||
break
|
||
|
||
proc push*[T](sq: SyncQueue[T], sr: SyncRequest[T]) =
|
||
## Push failed request back to queue.
|
||
if sr.index notin sq.pending:
|
||
# If request `sr` not in our pending list, it only means that
|
||
# SyncQueue.resetWait() happens and all pending requests are expired, so
|
||
# we swallow `old` requests, and in such way sync-workers are able to get
|
||
# proper new requests from SyncQueue.
|
||
return
|
||
sq.pending.del(sr.index)
|
||
sq.toDebtsQueue(sr)
|
||
|
||
proc pop*[T](sq: SyncQueue[T], maxslot: Slot, item: T): SyncRequest[T] =
|
||
## Create new request according to current SyncQueue parameters.
|
||
if len(sq.debtsQueue) > 0:
|
||
if maxSlot < sq.debtsQueue[0].slot:
|
||
# Peer's latest slot is less than starting request's slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
if maxSlot < sq.debtsQueue[0].lastSlot():
|
||
# Peer's latest slot is less than finishing request's slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
var sr = sq.debtsQueue.pop()
|
||
sq.debtsCount = sq.debtsCount - sr.count
|
||
sr.setItem(item)
|
||
sq.makePending(sr)
|
||
sr
|
||
else:
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
if maxSlot < sq.inpSlot:
|
||
# Peer's latest slot is less than queue's input slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
if sq.inpSlot > sq.finalSlot:
|
||
# Queue's input slot is bigger than queue's final slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
let lastSlot = min(maxslot, sq.finalSlot)
|
||
let count = min(sq.chunkSize, lastSlot + 1'u64 - sq.inpSlot)
|
||
var sr = SyncRequest.init(sq.kind, sq.inpSlot, count, item)
|
||
sq.advanceInput(count)
|
||
sq.makePending(sr)
|
||
sr
|
||
of SyncQueueKind.Backward:
|
||
if sq.inpSlot == 0xFFFF_FFFF_FFFF_FFFF'u64:
|
||
return SyncRequest.empty(sq.kind, T)
|
||
if sq.inpSlot < sq.finalSlot:
|
||
return SyncRequest.empty(sq.kind, T)
|
||
let (slot, count) =
|
||
block:
|
||
let baseSlot = sq.inpSlot + 1'u64
|
||
if baseSlot - sq.finalSlot < sq.chunkSize:
|
||
let count = uint64(baseSlot - sq.finalSlot)
|
||
(baseSlot - count, count)
|
||
else:
|
||
(baseSlot - sq.chunkSize, sq.chunkSize)
|
||
if (maxSlot + 1'u64) < slot + count:
|
||
# Peer's latest slot is less than queue's input slot.
|
||
return SyncRequest.empty(sq.kind, T)
|
||
var sr = SyncRequest.init(sq.kind, slot, count, item)
|
||
sq.advanceInput(count)
|
||
sq.makePending(sr)
|
||
sr
|
||
|
||
proc debtLen*[T](sq: SyncQueue[T]): uint64 =
|
||
sq.debtsCount
|
||
|
||
proc pendingLen*[T](sq: SyncQueue[T]): uint64 =
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
# When moving forward `outSlot` will be <= of `inpSlot`.
|
||
sq.inpSlot - sq.outSlot
|
||
of SyncQueueKind.Backward:
|
||
# When moving backward `outSlot` will be >= of `inpSlot`
|
||
sq.outSlot - sq.inpSlot
|
||
|
||
proc len*[T](sq: SyncQueue[T]): uint64 {.inline.} =
|
||
## Returns number of slots left in queue ``sq``.
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.finalSlot + 1'u64 - sq.outSlot
|
||
of SyncQueueKind.Backward:
|
||
sq.outSlot + 1'u64 - sq.finalSlot
|
||
|
||
proc total*[T](sq: SyncQueue[T]): uint64 {.inline.} =
|
||
## Returns total number of slots in queue ``sq``.
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.finalSlot + 1'u64 - sq.startSlot
|
||
of SyncQueueKind.Backward:
|
||
sq.startSlot + 1'u64 - sq.finalSlot
|
||
|
||
proc progress*[T](sq: SyncQueue[T]): uint64 =
|
||
## How many slots we've synced so far
|
||
case sq.kind
|
||
of SyncQueueKind.Forward:
|
||
sq.outSlot - sq.startSlot
|
||
of SyncQueueKind.Backward:
|
||
sq.startSlot - sq.outSlot
|