To further tighten Nimbus against spam, this PR introduces a global
quota for block requests (shared between peers) as well as a general
per-peer request limit that applies to all libp2p requests.
* apply request quota before decoding message
* for high-bandwidth requests (blocks), apply a shared global quota
which helps manage bandwidth for high-peer setups
* add metrics
Currently, we require genesis and a checkpoint block and state to start
from an arbitrary slot - this PR relaxes this requirement so that we can
start with a state alone.
The current trusted-node-sync algorithm works by first downloading
blocks until we find an epoch aligned non-empty slot, then downloads the
state via slot.
However, current
[proposals](https://github.com/ethereum/beacon-APIs/pull/226) for
checkpointing prefer finalized state as
the main reference - this allows more simple access control and caching
on the server side - in particular, this should help checkpoint-syncing
from sources that have a fast `finalized` state download (like infura
and teku) but are slow when accessing state via slot.
Earlier versions of Nimbus will not be able to read databases created
without a checkpoint block and genesis. In most cases, backfilling makes
the database compatible except where genesis is also missing (custom
networks).
* backfill checkpoint block from libp2p instead of checkpoint source,
when doing trusted node sync
* allow starting the client without genesis / checkpoint block
* perform epoch start slot lookahead when loading tail state, so as to
deal with the case where the epoch start slot does not have a block
* replace `--blockId` with `--state-id` in TNS command line
* when replaying, also look at the parent of the last-known-block (even
if we don't have the parent block data, we can still replay from a
"parent" state) - in particular, this clears the way for implementing
state pruning
* deprecate `--finalized-checkpoint-block` option (no longer needed)
* cap maximum number of chunks to download from peer (fixes#1620)
* drop support for requesting blocks via v1 / phase0 protocol
* tighten bounds checking of fixed-size messages
Allow config of deployment phase via config instead of attempting to
derive from genesis content (when running relevant testnets), so that
we don't have to keep maintaining the list inside the binary.
When running as Gnosis-chain binary the config was no longer adjustable.
Restores loading custom configs when running as Gnosis-chain binary,
as long as the following keys remain same:
- SLOTS_PER_EPOCH=16
- SECONDS_PER_SLOT=5
- BASE_REWARD_FACTOR=25
- EPOCHS_PER_SYNC_COMMITTEE_PERIOD=512
This allows running the Gnosis-chain binary on custom test networks.
* detect mismatch of config and binary
When loading configuration that sets keys that Nimbus bakes into the
binary at compile-time, raise an error if the config is incompatible
instead of ignoring the conflicting value.
The optimistic sync spec was updated since the LC based optsync module
was introduced. It is no longer necessary to wait for the justified
checkpoint to have execution enabled; instead, any block is okay to be
optimistically imported to the EL client, as long as its parent block
has execution enabled. Complex syncing logic has been removed, and the
LC optsync module will now follow gossip directly, reducing the latency
when using this module. Note that because this is now based on gossip
instead of using sync manager / request manager, that individual blocks
may be missed. However, EL clients should recover from this by fetching
missing blocks themselves.
* Keymanager API for the validator client
* Properly treat the 'description' field as optional when loading Keystores
* Spec-compliant serialization of the slashing data in Keymanager's DeleteKeys response ()
Fixes#3940Fixes#3964Closes#3884 by adding test
* Use final `v1` version for light client protocols
* Unhide LC data collection options
* Default enable LC data serving
* rm unneeded import
* Connect to EL on startup
* Add docs for LC based EL sync
LC cancels concurrent requests if one peer sent a correct response and
waiting for other peers is no longer useful. On the server side this
resulted in a descore (-500) and a likely disconnect. The behaviour is
changed to match `UnexpectedEOF`, `PotentiallyExpectedEOF` handling that
return an error response without disconnecting from the peer.
All message processing is done in the validation callbacks, so there's
no need to trigger data handlers for messages we publish - the
self-publish is async, and therefore has an associated cost
Combines the LC data configuration options (serve / importMode), the
callbacks (finality / optimistic LC update) as well as the cache storing
light client data, into a new `LightClientDataStore` structure.
Also moves the structure into a light client specific file.
* check for and log gossip broadcast failure
* switch notices to warns; update LC variables regardless
* don't both return a Result and log sending error
* add metrics counter for failed-due-to-no-peers and removed unnecessary async
* don't report failure of sync committee messages
* remove redundant metric
* document metric being incremented
For consistency with other options, use a common prefix for light client
data configuration options.
* `--serve-light-client-data` --> `--light-client-data-serve`
* `--import-light-client-data` --> `--light-client-data-import-mode`
No deprecation of the old identifiers as they were only sparingly used
and all usage can be easily updated without interferance.
Adds a `LightClient` instance to the beacon node as preparation to
accelerate syncing in the future (optimistic sync).
- `--light-client-enable` turns on the feature
- `--light-client-trusted-block-root` configures block to start from
If no block root is configured, light client tracks DAG `finalizedHead`.
Introduces a new library for syncing using libp2p based light client
sync protocol, and adds a new `nimbus_light_client` executable that uses
this library for syncing. The new executable emits log messages when
new beacon block headers are received, and is integrated into testing.