nimbus-eth2/tests/test_attestation_pool.nim

640 lines
24 KiB
Nim
Raw Normal View History

# beacon_chain
# Copyright (c) 2018-2021 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
{.used.}
import
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
std/sequtils,
# Status lib
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
unittest2,
chronicles, chronos,
stew/byteutils,
eth/keys,
# Internal
../beacon_chain/[beacon_node_types, extras, beacon_clock],
../beacon_chain/gossip_processing/[gossip_validation, batch_validation],
../beacon_chain/fork_choice/[fork_choice_types, fork_choice],
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
../beacon_chain/consensus_object_pools/[
block_quarantine, blockchain_dag, block_clearance, attestation_pool],
../beacon_chain/ssz/merkleization,
../beacon_chain/spec/[crypto, datatypes, digest, validator, state_transition,
helpers, beaconstate, presets, network],
# Test utilities
./testutil, ./testblockutil
func combine(tgt: var Attestation, src: Attestation) =
## Combine the signature and participation bitfield, with the assumption that
## the same data is being signed - if the signatures overlap, they are not
## combined.
doAssert tgt.data == src.data
# In a BLS aggregate signature, one needs to count how many times a
# particular public key has been added - since we use a single bit per key, we
# can only it once, thus we can never combine signatures that overlap already!
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
doAssert not tgt.aggregation_bits.overlaps(src.aggregation_bits)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
tgt.aggregation_bits.incl(src.aggregation_bits)
var agg {.noInit.}: AggregateSignature
agg.init(tgt.signature)
agg.aggregate(src.signature)
tgt.signature = agg.finish().exportRaw()
func loadSig(a: Attestation): CookedSig =
a.signature.load.get().CookedSig
proc pruneAtFinalization(dag: ChainDAGRef, attPool: AttestationPool) =
if dag.needStateCachesAndForkChoicePruning():
dag.pruneStateCachesDAG()
# pool[].prune() # We test logic without attestation pool / fork choice pruning
suiteReport "Attestation pool processing" & preset():
## For now just test that we can compile and execute block processing with
## mock data.
setup:
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
# Genesis state that results in 6 members per committee
var
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
chainDag = init(ChainDAGRef, defaultRuntimePreset, makeTestDB(SLOTS_PER_EPOCH * 6))
quarantine = QuarantineRef.init(keys.newRng())
pool = newClone(AttestationPool.init(chainDag, quarantine))
state = newClone(chainDag.headState)
cache = StateCache()
# Slot 0 is a finalized slot - won't be making attestations for it..
2020-05-19 17:46:29 +02:00
check:
process_slots(state.data, getStateField(state, slot) + 1, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Can add and retrieve simple attestations" & preset():
let
# Create an attestation for slot 1!
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
bc0 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
attestation = makeAttestation(
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
state.data.data, state.blck.root, bc0[0], cache)
pool[].addAttestation(
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
attestation, @[bc0[0]], attestation.loadSig,
attestation.data.slot)
2020-05-19 17:46:29 +02:00
check:
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
# Added attestation, should get it back
toSeq(pool[].attestations(none(Slot), none(CommitteeIndex))) ==
@[attestation]
toSeq(pool[].attestations(
some(attestation.data.slot), none(CommitteeIndex))) == @[attestation]
toSeq(pool[].attestations(
some(attestation.data.slot), some(attestation.data.index.CommitteeIndex))) ==
@[attestation]
toSeq(pool[].attestations(none(Slot), some(attestation.data.index.CommitteeIndex))) ==
@[attestation]
toSeq(pool[].attestations(some(
attestation.data.slot + 1), none(CommitteeIndex))) == []
toSeq(pool[].attestations(
none(Slot), some(CommitteeIndex(attestation.data.index + 1)))) == []
process_slots(
state.data,
getStateField(state, slot) + MIN_ATTESTATION_INCLUSION_DELAY, cache)
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len == 1
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
pool[].getAggregatedAttestation(1.Slot, 0.CommitteeIndex).isSome()
let
root1 = addTestBlock(
state.data, state.blck.root,
cache, attestations = attestations, nextSlot = false).root
bc1 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
att1 = makeAttestation(
state.data.data, root1, bc1[0], cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
check:
process_slots(
state.data,
getStateField(state, slot) + MIN_ATTESTATION_INCLUSION_DELAY, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
check:
# shouldn't include already-included attestations
pool[].getAttestationsForBlock(state.data.data, cache) == []
pool[].addAttestation(
att1, @[bc1[0]], att1.loadSig, att1.data.slot)
check:
# but new ones should go in
pool[].getAttestationsForBlock(state.data.data, cache).len() == 1
let
att2 = makeAttestation(
state.data.data, root1, bc1[1], cache)
pool[].addAttestation(
att2, @[bc1[1]], att2.loadSig, att2.data.slot)
let
combined = pool[].getAttestationsForBlock(state.data.data, cache)
check:
# New attestations should be combined with old attestations
combined.len() == 1
combined[0].aggregation_bits.countOnes() == 2
pool[].addAttestation(
combined[0], @[bc1[1], bc1[0]], combined[0].loadSig, combined[0].data.slot)
check:
# readding the combined attestation shouldn't have an effect
pool[].getAttestationsForBlock(state.data.data, cache).len() == 1
let
# Someone votes for a different root
att3 = makeAttestation(state.data.data, Eth2Digest(), bc1[2], cache)
pool[].addAttestation(
att3, @[bc1[2]], att3.loadSig, att3.data.slot)
check:
# We should now get both attestations for the block, but the aggregate
# should be the one with the most votes
pool[].getAttestationsForBlock(state.data.data, cache).len() == 2
pool[].getAggregatedAttestation(2.Slot, 0.CommitteeIndex).
get().aggregation_bits.countOnes() == 2
pool[].getAggregatedAttestation(2.Slot, hash_tree_root(att2.data)).
get().aggregation_bits.countOnes() == 2
let
# Someone votes for a different root
att4 = makeAttestation(state.data.data, Eth2Digest(), bc1[2], cache)
pool[].addAttestation(
att4, @[bc1[2]], att3.loadSig, att3.data.slot)
timedTest "Working with aggregates" & preset():
let
# Create an attestation for slot 1!
bc0 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
var
att0 = makeAttestation(state.data.data, state.blck.root, bc0[0], cache)
att0x = att0
att1 = makeAttestation(state.data.data, state.blck.root, bc0[1], cache)
att2 = makeAttestation(state.data.data, state.blck.root, bc0[2], cache)
att3 = makeAttestation(state.data.data, state.blck.root, bc0[3], cache)
# Both attestations include member 2 but neither is a subset of the other
att0.combine(att2)
att1.combine(att2)
pool[].addAttestation(att0, @[bc0[0], bc0[2]], att0.loadSig, att0.data.slot)
pool[].addAttestation(att1, @[bc0[1], bc0[2]], att1.loadSig, att1.data.slot)
check:
process_slots(
state.data,
getStateField(state, slot) + MIN_ATTESTATION_INCLUSION_DELAY, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
check:
pool[].getAttestationsForBlock(state.data.data, cache).len() == 2
# Can get either aggregate here, random!
pool[].getAggregatedAttestation(1.Slot, 0.CommitteeIndex).isSome()
# Add in attestation 3 - both aggregates should now have it added
pool[].addAttestation(att3, @[bc0[3]], att3.loadSig, att3.data.slot)
block:
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len() == 2
attestations[0].aggregation_bits.countOnes() == 3
# Can get either aggregate here, random!
pool[].getAggregatedAttestation(1.Slot, 0.CommitteeIndex).isSome()
# Add in attestation 0 as single - attestation 1 is now a superset of the
# aggregates in the pool, so everything else should be removed
pool[].addAttestation(att0x, @[bc0[0]], att0x.loadSig, att0x.data.slot)
block:
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len() == 1
attestations[0].aggregation_bits.countOnes() == 4
pool[].getAggregatedAttestation(1.Slot, 0.CommitteeIndex).isSome()
timedTest "Everyone voting for something different" & preset():
var attestations: int
for i in 0..<SLOTS_PER_EPOCH:
var root: Eth2Digest
root.data[0..<8] = toBytesBE(i.uint64)
let
bc0 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
for j in 0..<bc0.len():
root.data[8..<16] = toBytesBE(j.uint64)
var att = makeAttestation(state.data.data, root, bc0[j], cache)
pool[].addAttestation(att, @[bc0[j]], att.loadSig, att.data.slot)
inc attestations
check:
process_slots(state.data, getStateField(state, slot) + 1, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
doAssert attestations.uint64 > MAX_ATTESTATIONS,
"6*SLOTS_PER_EPOCH validators > 128 mainnet MAX_ATTESTATIONS"
check:
# Fill block with attestations
pool[].getAttestationsForBlock(state.data.data, cache).lenu64() ==
MAX_ATTESTATIONS
pool[].getAggregatedAttestation(
getStateField(state, slot) - 1, 0.CommitteeIndex).isSome()
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Attestations may arrive in any order" & preset():
var cache = StateCache()
let
# Create an attestation for slot 1!
bc0 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
attestation0 = makeAttestation(
state.data.data, state.blck.root, bc0[0], cache)
2020-05-19 17:46:29 +02:00
check:
process_slots(state.data, getStateField(state, slot) + 1, cache)
let
bc1 = get_beacon_committee(state.data.data,
getStateField(state, slot), 0.CommitteeIndex, cache)
attestation1 = makeAttestation(
state.data.data, state.blck.root, bc1[0], cache)
# test reverse order
pool[].addAttestation(
attestation1, @[bc1[0]], attestation1.loadSig, attestation1.data.slot)
pool[].addAttestation(
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
attestation0, @[bc0[0]], attestation0.loadSig, attestation0.data.slot)
discard process_slots(
state.data, MIN_ATTESTATION_INCLUSION_DELAY.Slot + 1, cache)
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len == 1
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Attestations should be combined" & preset():
var cache = StateCache()
let
# Create an attestation for slot 1!
bc0 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
attestation0 = makeAttestation(
state.data.data, state.blck.root, bc0[0], cache)
attestation1 = makeAttestation(
state.data.data, state.blck.root, bc0[1], cache)
pool[].addAttestation(
attestation0, @[bc0[0]], attestation0.loadSig, attestation0.data.slot)
pool[].addAttestation(
attestation1, @[bc0[1]], attestation1.loadSig, attestation1.data.slot)
2020-05-19 17:46:29 +02:00
check:
process_slots(state.data, MIN_ATTESTATION_INCLUSION_DELAY.Slot + 1, cache)
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len == 1
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Attestations may overlap, bigger first" & preset():
var cache = StateCache()
var
# Create an attestation for slot 1!
bc0 = get_beacon_committee(
state.data.data, getStateField(state, slot), 0.CommitteeIndex, cache)
attestation0 = makeAttestation(
state.data.data, state.blck.root, bc0[0], cache)
attestation1 = makeAttestation(
state.data.data, state.blck.root, bc0[1], cache)
attestation0.combine(attestation1)
pool[].addAttestation(
attestation0, @[bc0[0]], attestation0.loadSig, attestation0.data.slot)
pool[].addAttestation(
attestation1, @[bc0[1]], attestation1.loadSig, attestation1.data.slot)
2020-05-19 17:46:29 +02:00
check:
process_slots(state.data, MIN_ATTESTATION_INCLUSION_DELAY.Slot + 1, cache)
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len == 1
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Attestations may overlap, smaller first" & preset():
var cache = StateCache()
var
# Create an attestation for slot 1!
bc0 = get_beacon_committee(state.data.data,
getStateField(state, slot), 0.CommitteeIndex, cache)
attestation0 = makeAttestation(
state.data.data, state.blck.root, bc0[0], cache)
attestation1 = makeAttestation(
state.data.data, state.blck.root, bc0[1], cache)
attestation0.combine(attestation1)
pool[].addAttestation(
attestation1, @[bc0[1]], attestation1.loadSig, attestation1.data.slot)
pool[].addAttestation(
attestation0, @[bc0[0]], attestation0.loadSig, attestation0.data.slot)
2020-05-19 17:46:29 +02:00
check:
process_slots(state.data, MIN_ATTESTATION_INCLUSION_DELAY.Slot + 1, cache)
let attestations = pool[].getAttestationsForBlock(state.data.data, cache)
check:
attestations.len == 1
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Fork choice returns latest block with no attestations":
var cache = StateCache()
let
b1 = addTestBlock(state.data, chainDag.tail.root, cache)
b1Add = chainDag.addRawBlock(quarantine, b1) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
let head = pool[].selectHead(b1Add[].slot)
check:
head == b1Add[]
let
b2 = addTestBlock(state.data, b1.root, cache)
b2Add = chainDag.addRawBlock(quarantine, b2) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
let head2 = pool[].selectHead(b2Add[].slot)
check:
head2 == b2Add[]
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Fork choice returns block with attestation":
var cache = StateCache()
let
b10 = makeTestBlock(state.data, chainDag.tail.root, cache)
b10Add = chainDag.addRawBlock(quarantine, b10) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
let head = pool[].selectHead(b10Add[].slot)
check:
head == b10Add[]
let
b11 = makeTestBlock(state.data, chainDag.tail.root, cache,
graffiti = GraffitiBytes [1'u8, 0, 0, 0 ,0 ,0 ,0 ,0 ,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
)
b11Add = chainDag.addRawBlock(quarantine, b11) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
bc1 = get_beacon_committee(
state.data.data, getStateField(state, slot) - 1, 1.CommitteeIndex, cache)
attestation0 = makeAttestation(state.data.data, b10.root, bc1[0], cache)
pool[].addAttestation(
attestation0, @[bc1[0]], attestation0.loadSig, attestation0.data.slot)
let head2 = pool[].selectHead(b10Add[].slot)
check:
# Single vote for b10 and no votes for b11
head2 == b10Add[]
let
attestation1 = makeAttestation(state.data.data, b11.root, bc1[1], cache)
attestation2 = makeAttestation(state.data.data, b11.root, bc1[2], cache)
pool[].addAttestation(
attestation1, @[bc1[1]], attestation1.loadSig, attestation1.data.slot)
let head3 = pool[].selectHead(b10Add[].slot)
let bigger = if b11.root.data < b10.root.data: b10Add else: b11Add
check:
# Ties broken lexicographically in spec -> ?
head3 == bigger[]
pool[].addAttestation(
attestation2, @[bc1[2]], attestation2.loadSig, attestation2.data.slot)
let head4 = pool[].selectHead(b11Add[].slot)
check:
# Two votes for b11
head4 == b11Add[]
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Trying to add a block twice tags the second as an error":
var cache = StateCache()
let
b10 = makeTestBlock(state.data, chainDag.tail.root, cache)
b10Add = chainDag.addRawBlock(quarantine, b10) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
let head = pool[].selectHead(b10Add[].slot)
check:
head == b10Add[]
# -------------------------------------------------------------
# Add back the old block to ensure we have a duplicate error
let b10_clone = b10 # Assumes deep copy
let b10Add_clone = chainDag.addRawBlock(quarantine, b10_clone) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
doAssert: b10Add_clone.error == (ValidationResult.Ignore, Duplicate)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Trying to add a duplicate block from an old pruned epoch is tagged as an error":
# Note: very sensitive to stack usage
chainDag.updateFlags.incl {skipBLSValidation}
var cache = StateCache()
let
b10 = addTestBlock(state.data, chainDag.tail.root, cache)
b10Add = chainDag.addRawBlock(quarantine, b10) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
let head = pool[].selectHead(b10Add[].slot)
doAssert: head == b10Add[]
# -------------------------------------------------------------
let b10_clone = b10 # Assumes deep copy
# -------------------------------------------------------------
# Pass an epoch
var block_root = b10.root
var attestations: seq[Attestation]
for epoch in 0 ..< 5:
let start_slot = compute_start_slot_at_epoch(Epoch epoch)
let committees_per_slot =
get_committee_count_per_slot(state.data.data, Epoch epoch, cache)
for slot in start_slot ..< start_slot + SLOTS_PER_EPOCH:
let new_block = addTestBlock(
state.data, block_root, cache, attestations = attestations)
block_root = new_block.root
let blockRef = chainDag.addRawBlock(quarantine, new_block) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
let head = pool[].selectHead(blockRef[].slot)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
doAssert: head == blockRef[]
chainDag.updateHead(head, quarantine)
pruneAtFinalization(chainDag, pool[])
attestations.setlen(0)
for index in 0'u64 ..< committees_per_slot:
let committee = get_beacon_committee(
state.data.data, getStateField(state, slot), index.CommitteeIndex,
cache)
# Create a bitfield filled with the given count per attestation,
# exactly on the right-most part of the committee field.
var aggregation_bits = init(CommitteeValidatorsBits, committee.len)
for v in 0 ..< committee.len * 2 div 3 + 1:
aggregation_bits[v] = true
attestations.add Attestation(
aggregation_bits: aggregation_bits,
data: makeAttestationData(
state.data.data, getStateField(state, slot),
index.CommitteeIndex, blockroot)
# signature: ValidatorSig()
)
cache = StateCache()
# -------------------------------------------------------------
# Prune
doAssert: chainDag.finalizedHead.slot != 0
pool[].prune()
doAssert: b10.root notin pool.forkChoice.backend
# Add back the old block to ensure we have a duplicate error
let b10Add_clone = chainDag.addRawBlock(quarantine, b10_clone) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
doAssert: b10Add_clone.error == (ValidationResult.Ignore, Duplicate)
suiteReport "Attestation validation " & preset():
setup:
# Genesis state that results in 3 members per committee
var
chainDag = init(ChainDAGRef, defaultRuntimePreset, makeTestDB(SLOTS_PER_EPOCH * 3))
quarantine = QuarantineRef.init(keys.newRng())
pool = newClone(AttestationPool.init(chainDag, quarantine))
state = newClone(chainDag.headState)
cache = StateCache()
batchCrypto = BatchCrypto.new(keys.newRng())
# Slot 0 is a finalized slot - won't be making attestations for it..
check:
process_slots(state.data, getStateField(state, slot) + 1, cache)
Revamp attestation pool This is a revamp of the attestation pool that cleans up several aspects of attestation processing as the network grows larger and block space becomes more precious. The aim is to better exploit the divide between attestation subnets and aggregations by keeping the two kinds separate until it's time to either produce a block or aggregate. This means we're no longer eagerly combining single-vote attestations, but rather wait until the last moment, and then try to add singles to all aggregates, including those coming from the network. Importantly, the branch improves on poor aggregate quality and poor attestation packing in cases where block space is running out. A basic greed scoring mechanism is used to select attestations for blocks - attestations are added based on how much many new votes they bring to the table. * Collect single-vote attestations separately and store these until it's time to make aggregates * Create aggregates based on single-vote attestations * Select _best_ aggregate rather than _first_ aggregate when on aggregation duty * Top up all aggregates with singles when it's time make the attestation cut, thus improving the chances of grabbing the best aggregates out there * Improve aggregation test coverage * Improve bitseq operations * Simplify aggregate signature creation * Make attestation cache temporary instead of storing it in attestation pool - most of the time, blocks are not being produced, no need to keep the data around * Remove redundant aggregate storage that was used only for RPC * Use tables to avoid some linear seeks when looking up attestation data * Fix long cleanup on large slot jumps * Avoid some pointers * Speed up iterating all attestations for a slot (fixes #2490)
2021-04-12 22:25:09 +02:00
timedTest "Validation sanity":
# TODO: refactor tests to avoid skipping BLS validation
chainDag.updateFlags.incl {skipBLSValidation}
var
cache: StateCache
for blck in makeTestBlocks(
chainDag.headState.data, chainDag.head.root, cache,
int(SLOTS_PER_EPOCH * 5), false):
let added = chainDag.addRawBlock(quarantine, blck) do (
blckRef: BlockRef, signedBlock: TrustedSignedBeaconBlock,
epochRef: EpochRef, state: HashedBeaconState):
# Callback add to fork choice if valid
pool[].addForkChoice(epochRef, blckRef, signedBlock.message, blckRef.slot)
check: added.isOk()
chainDag.updateHead(added[], quarantine)
pruneAtFinalization(chainDag, pool[])
var
# Create an attestation for slot 1!
beacon_committee = get_beacon_committee(
chainDag.headState.data.data, chainDag.head.slot, 0.CommitteeIndex, cache)
attestation = makeAttestation(
chainDag.headState.data.data, chainDag.head.root, beacon_committee[0], cache)
committees_per_slot =
get_committee_count_per_slot(chainDag.headState.data.data,
attestation.data.slot.epoch, cache)
subnet = compute_subnet_for_attestation(
committees_per_slot,
attestation.data.slot, attestation.data.index.CommitteeIndex)
beaconTime = attestation.data.slot.toBeaconTime()
check:
validateAttestation(pool, batchCrypto, attestation, beaconTime, subnet, true).waitFor().isOk
# Same validator again
validateAttestation(pool, batchCrypto, attestation, beaconTime, subnet, true).waitFor().error()[0] ==
ValidationResult.Ignore
pool[].nextAttestationEpoch.setLen(0) # reset for test
check:
# Wrong subnet
validateAttestation(pool, batchCrypto, attestation, beaconTime, subnet + 1, true).waitFor().isErr
pool[].nextAttestationEpoch.setLen(0) # reset for test
check:
# Too far in the future
validateAttestation(
pool, batchCrypto, attestation, beaconTime - 1.seconds, subnet + 1, true).waitFor().isErr
pool[].nextAttestationEpoch.setLen(0) # reset for test
check:
# Too far in the past
validateAttestation(
pool, batchCrypto, attestation,
beaconTime - (SECONDS_PER_SLOT * SLOTS_PER_EPOCH - 1).int.seconds,
subnet + 1, true).waitFor().isErr